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1 Introduction

The (Weak) König Lemma says that every infinite (binary) tree has an infinite path.
Kleene [17] gave a recursive counterexample to this statement: a recursive infinite
binary tree without recursive infinite path. Moreover, the Weak König Lemma for
detachable trees (WKL) is equivalent [13, 4] to Bishop’s Lesser Limited Principle of
Omniscience (LLPO)—a fragment of the Law of Excluded Middle that fails to hold
recursively—in conjunction with an instance of dependent choice. One thus cannot
expect to find a constructive proof of WKL as it stands, let alone of König’s Lemma.

By a constructive proof we mean one that is carried out within Bishop-style constructive
mathematics (BISH) [5], the overall framework of this note. Due to the choice of
intuitionistic logic characteristic of BISH, one or the other assumption needs to be
made explicit that would be automatic with classical logic: an assertion A is said to
be decidable whenever A ∨ ¬A holds;1 a subset S of a set T is called detachable if
x ∈ S is decidable for each x ∈ T ; and a set S is named discrete if x = y is decidable
for each pair x, y ∈ S . Likewise, one says that a set S is inhabited if it has an element,
which is to be distinguished from the double negation that S be nonempty.

After this digression on the method of the present paper, we come back to its principal
object: infinite paths of infinite trees. Kleene’s example can be ruled out by requiring

1For a brief discussion of this use of “decidable” in contrast to “recursive” we refer to [16].
Note in this context that every theorem of BISH is valid in Russian recursive mathematics,
which is BISH plus Markov’s principle and (an appropriate form of) Church’s thesis [10].
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that each tree under consideration have at most one infinite path. When one restricts
WKL to trees of this sort, the resulting principle WKL! is equivalent [3, 15, 30] to
Brouwer’s Fan Theorem for detachable bars (FAN). This parallels the equivalence
[2] of FAN and the minimum principle MIN! analogous to WKL! An analysis [28]
of the latter equivalence has shown, however, that FAN is only needed for the step
from the given uniqueness hypothesis to the canonical uniform variant of it. In fact
FAN is necessary and sufficient for this first step, whereas the second step, from the
uniform uniqueness precondition to the desired existence statement, is a mere instance
of completeness.2

To analyse the equivalence of FAN and WKL! in a similar way, we recall [15, 30]
that FAN suffices for the assertion (*) “every detachable binary tree with at most one
infinite path has uniformly at most one infinite path”. Moreover, (*) implies WKL!:
every detachable binary tree with uniformly at most one infinite path has a longest path
[15], which is an infinite path of the tree whenever, in addition, the tree is infinite.
(In fact WKL is equivalent [14] to the Longest Path Lemma (LPL): every detachable
binary tree has a longest path.) In combination with the implication from WKL! to
FAN, this yields that FAN is also necessary for the assertion (*).

In the present paper we give a direct proof of the statement that every infinite tree with
uniformly at most one infinite path actually has an infinite path. It is noteworthy that
the tree under consideration need neither be detachable nor binary; it suffices that its
nodes are finite words over a discrete alphabet. As a by-product we observe that if—as
in the binary case—the alphabet happens to be finite, then for every detachable binary
tree with uniformly at most one infinite path there is a spread which is an infinite path
of the given tree whenever the tree is infinite. The spread we construct need not be
contained in the tree under consideration unless this is infinite; at least in this sense the
spread is a generalisation of a longest path.

In the spirit of formal topology [26, 27] we understand infinite paths as linear spreads—
or, equivalently, as infinite chains—rather than as infinite sequences. This allows us

2As a proof paradigm this instance of completeness can be traced back to Russian recursive
mathematics [11, 23] (see also [22]; applications include the construction of Haar measures);
has proved productive in constructive analysis see [7, 8] (see also [9] and [5, Chapter 7]; the
use of uniform uniqueness is often somewhat implicit [12]); stood right at the beginnings of
proof mining [18, 19] (see also [20] and [21, Chapters 15–7]; here uniform uniqueness is put
as a modulus of uniqueness); has repeatedly shown up in computable analysis [6, 32, 33]; and
most recently has reoccurred in abstract Stone duality [1, 31]. We refer to [29] for a reminder
of this time-honoured argument, for a treatment of it in a choice-free environment, and for a
few more details about its impressive history.
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to get by without any choice, whereas one might have to use unique countable choice
to extract an infinite sequence from an infinite path. We also work with a first-order
characterisation of “uniformly at most one infinite path” [15, 30], which, in particular,
is formulated without infinite sequences. Spreads have further been used in contexts
which lack uniqueness, to avoid choosing sequences [25].

2 Preliminaries

By m, n, k, . . . we mean integers > 0. Let A throughout be an inhabited discrete set.
Examples are A = N and A = {0, 1}. We use u, v,w, . . . as variables for the elements
of

A* =
⋃
n>0

An .

As usual the length of u ∈ An is defined as |u| = n. The empty sequence () is the only
one of length 0. The n-th finite initial segment

un = (u (0) , . . . , u (n− 1))

of u with |u| > n has length n. Note that u|u| = u and u0 = ().

We say that a subset T of A* is unbounded (in length) if

∀n∃u
(
u ∈ T ∧ |u| > n

)
,

and bounded (in length) if

∃n∀u
(
u ∈ T → |u| < n

)
.

If A is finite, which we do not suppose in general, then T ⊆ A* is (un)bounded
precisely when it is (in)finite.

We identify each sequence (i) of length 1 with its only element i ∈ A, and denote the
concatenation of u and v by their juxtaposition uv. For example, if w = ui for some
i ∈ A, then w is an immediate successor of u. We write u 6 w if u is a restriction of
w: that is,

u 6 w↔ ∃v (uv = w) .

This partial order on A* is decidable, because A is discrete. Clearly, () is the least
element of A* with respect to 6.

A subset T of A* is closed under restrictions if

u 6 w→ w ∈ T → u ∈ T .
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Any such T is inhabited if and only if () ∈ T ; moreover, it is unbounded precisely
when

∀n ∃u
(
|u| = n ∧ u ∈ T

)
,

and bounded precisely when

∃n∀u
(
|u| = n→ u /∈ T

)
.

A tree is an inhabited subset T of A* which is closed under restrictions. A tree T is a
spread if every element of T has an (immediate) successor in T : that is,

∀u (u ∈ T → ∃i ∈ A (ui ∈ T)) .

If T is a spread, then—by induction—for every n there is u ∈ T with |u| = n, which
is to say that T is unbounded; in other words, a spread T has at least one element of
any given length. Note that we do not generally suppose that a tree be detachable.

A subset T of A* is a chain if it is linearly ordered with respect to 6 or, equivalently,
if

u, u′ ∈ T → |u| 6 |u′| → u 6 u′ .

In particular, a chain T has at most one element u of any given length:

u, u′ ∈ T → |u| = |u′| → u = u′ ;

this condition is even equivalent to “T is a chain” whenever T is closed under re-
strictions. A chain is (un)bounded precisely when it is (in)finite. By a linear spread
we understand a spread which is a chain. It is easy to see that the linear spreads are
precisely the infinite chains. Clearly a linear spread has exactly one element of any
given length.

3 Infinite paths

The following definitions will be used throughout this section. Let T be a tree. We
consider the predicate

P(u, k) ≡ ∀w
(
|w| = |u|+ k→ w ∈ T → u 6 w

)
,

for which P(u, k) implies P(u, `) whenever k 6 `. We further set

S = {u ∈ A* : ∃k P(u, k)} .

If T is detachable, and A is finite, then P is decidable, and thus S simply existential
(Σ0

1 ).
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Lemma 1

(1) The subset S of A* is a tree.

(2) If T is bounded, then S = A* .

(3) If T is unbounded, then S is a chain that satisfies S ⊆ T .

Proof The only perhaps not obvious statement is that S is a chain whenever T is
unbounded. To see this, let u, u′ ∈ S have length n. Pick k and k′ with P(u, k) and
P(u′, k′). We may assume that k > k′ . Since T is unbounded, there is v ∈ T such that
|v| = n + k . Now u 6 v and u′ 6 v by our choice of k , and thus u = u′ .

Helmut Schwichtenberg3 has made the observation that if u ∈ S and T is unbounded,
then

Tu = {v : uv ∈ T}

is unbounded; this is the subtree of T with root u. Hence when one is after an infinite
path in T , then it makes sense to consider S . Under suitable conditions S will be the
only infinite path in T .

By an infinite path R in a tree T we mean a linear spread (or, equivalently, an infinite
chain—see above) such that R ⊆ T . Hence an infinite path in A* is nothing but a
formal point of the formal topology on A* [26]. Notice that S is an infinite path in T
if and only if S ∩ T is unbounded.

By an infinite path in a tree T one usually understands an infinite sequence α of
elements of A (i.e. a mapping from N to A) whose finite initial segments

αn = (α (0) , . . . , α (n− 1))

all belong to T . Every α of this sort gives clearly rise to the infinite path {αn : n > 0}
in the sense of this paper. Conversely, can one extract an infinite sequence α from an
infinite path R? If R is detachable and e.g. A ⊆ N, then one can define α recursively
by setting

α(n) = min{i ∈ {0, 1} : (αn)i ∈ R} .

In general, however, one might need a suitable form of countable unique choice to pick,
simultaneously for every n, the unique u ∈ R of length n, and to gather them into a
sequence.

Following [15] we say that a tree T has uniformly at most one infinite path if

(1) ∀n ∃m ∀v,w
(
|v| = n + m ∧ |w| = n + m→ v ∈ T ∧ w ∈ T → vn = wn

)
.

3Personal communication to the second author, JAIST, March 2010.

Journal of Logic & Analysis 3:6 (2011)



6 T Coquand and P Schuster

If for any n there is m as in (1), then this m can be taken as large as one pleases.
Although no infinite sequence occurs in (1), it is equivalent to the definition one might
expect [15]; see also [30]. Correspondents of (1) occur naturally in mathematical
analysis, e.g. in the contexts of best approximations and of fixed points; see the
references given in Footnote 1 above.

Lemma 2 Let T be a tree with uniformly at most one infinite path. If T is unbounded,
then S is a spread.

Proof By virtue of Lemma 1, part 1 it remains to be seen that if u ∈ S , then ui ∈ S
for some i ∈ A. Assume that u ∈ S , and take k > 1 with P(u, k). For this k and
n = |u|+ 1, take m > k as in (1). Note that |u| < |u|+ k < n + m. Now there is v ∈ T
such that |v| = n + m. For any such v we have v(|u|+ k) ∈ T and thus u 6 v(|u|+ k)
by our choice of k . Hence ui 6 v for some i ∈ A, for which P(ui,m), and thus ui ∈ S .
In fact, if w ∈ T such that |w| = n + m, then wn = vn = ui by our choice of m.

If T is detachable and A is finite, then Lemma 2 remains valid even if T fails to be
unbounded, in which sense S is a generalisation of a longest path in T [15]. In fact, if
u, k , and m are as in the foregoing proof, then (since T is detachable and A is finite)
one can decide whether there is v ∈ T such that |v| = n + m. If this is the case, then
one can proceed as in the proof. Otherwise T is bounded; whence S = A* by Lemma
1, part 2 and thus ui ∈ S for all i ∈ A.

We say that R ⊆ A* is uniformly absorbing (in T ) if

∀n ∃m ∀w
(
|w| = n + m→ w ∈ T → wn ∈ R

)
.

This notion corresponds to the one of a strong minimum [2]. Any two uniformly
absorbing infinite paths in T are equal. More precisely, if R is an infinite path in T ,
and R′ is uniformly absorbing in T , then R ⊆ R′ .

Lemma 3 Each of the following assertions implies the next:

(1) There is a chain R which is uniformly absorbing in T .

(2) T has uniformly at most one infinite path.

(3) Every unbounded tree R ⊆ T is uniformly absorbing.

Lemma 4 If S is unbounded, then it is uniformly absorbing in T .
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Proof For a given n there is u ∈ S with |u| = n, for which there is m with P(u,m).
Any such m is as required: if w ∈ T has length n + m, then u 6 w by our choice of
m; whence wn = u and thus wn ∈ S .

Theorem 5 The following statements are equivalent:

(1) T is unbounded and has uniformly at most one infinite path.

(2) S is an infinite path in T .

(3) There is an infinite path in T which is uniformly absorbing.

Proof By Lemma 1, part 3 and Lemma 2 the first item implies the second, which in
view of Lemma 4 implies the third item. According to Lemma 3 the first item follows
from the third.

Under any of the equivalent conditions from Theorem 5, S is the one and only infinite
path in T , and uniformly absorbing.

One might be tempted to enforce S ⊆ T from the outset, by substituting S∩T for S . If
one did so, then Lemma 1 would remain valid mutatis mutandis, whereas the proof of
Lemma 2 would only work whenever T is unbounded, in which case S ⊆ T anyhow
(Lemma 1, part 3).
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