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Diffusion Processes via Parabolic Equations:
An Infinitesimal approach to Lindeberg’s limit theorem.

HEINZ WEISSHAUPT1 , 2 , 3

Abstract: We approach infinitesimal diffusion processes via a linkage to the diffu-
sion equation. By this we obtain Lindeberg’s limit theorem and a Lindeberg type
limit theorem for diffusion processes by an application of the underspill principle.
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1 Introduction

The evolution of diffusions is in standard mathematics described either by ordinary
stochastic differential equations, or by partial differential equations, called diffusion
equations. Both descriptions are usually connected via the Ito formula. (See [20]
Section 5.2, [31] Sections 5.1-5.3, [28] Section 7.3, [18] Theorem 4.8.6., [32] Section
6, [14] Section 1.8 and [16] Section 5.1.)

Nonstandard diffusion theory is usually approached by linking the nonstandard stochas-
tic process defined on a near interval by the concept of Loeb measure [25] to a cor-
responding standard stochastic process, as described in [8] or [35]. This approach to
diffusion theory started with a nonstandard construction of the Brownian motion and
the Ito integral in [1] and was further extended to stochastic integration in a broader
context in [22] and applied to the analysis of the Ornstein-Uhlenbeck Process [23]
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and the Malliavin Calculus [9] (see also [24]). Some further important developments
concerning Loeb measures on Hyperfinite spaces can be found in [12]. Their abstrac-
tion leads to the concept of neocompactness that can be used to prove the existence of
solutions of stochastic differential equations with special properties [17].

Another way of linking nonstandard stochastic processes to the standard mathematical
world - by Nelson’s reduction algorithm - is described in [27]. A third possibility [3] is
to use hyper-finite combinatorics and the concept of equivalent processes ([27] Chapter
17) together with path-wise versions of Ito’s formula and Girsanov’s theorem.

We approach diffusions via infinitesimal stochastic difference equations and call the
solutions of these equations infinitesimal diffusion processes. To connect the infinitesi-
mal diffusion processes to the world of standard mathematics we employ Kolmogorov’s
backward equation.

By this connection we further prove that the standard parts of the expectations of
the infinitesimal diffusion processes are independent of the choice of the underlying
infinitesimal model of white noise.

This fact can be interpreted as an infinitesimal version of a Lindeberg type limit
theorem. By the underspill-principle of nonstandard analysis this enables us to prove a
Lindeberg type limit theorem for diffusions in standard mathematical terms. This limit
theorem is contrasted by various approximation theorems provided in [18].

Note that the relation between nonstandard diffusion processes and the diffusion equa-
tion has - in a different way - already been investigated in [4]. Another, similar
connection between a stochastic differential equation and a partial differential equation
is the connection between the Navier-Stokes equation and the Foiaş equation. Investi-
gation on this connection by nonstandard methods was done in [6] and [7].

Diffusion processes Y : Ω × [t0,T] 7→ R with initial state x0 are in the standard
mathematical literature described as solutions of stochastic differential equations

(1) dYt = a(t,Yt) dt + σ(t,Yt) dBt ∧ Yt0 = x0

(with Bt denoting Brownian motion). Note that the existence of the solution of a
stochastic differential equation presupposes in the Ito interpretation ([28] Section 5.1)
the notion of stochastic integration. Equation (1) is in the Ito interpretation just an
abbreviation of YT = Yt0 +

∫ T
t0

a(t,Yt)dt +
∫ T

t0
σ(t,Yt)dBt . (See also [31] Section 3.4

or [16] Sections 5.2 and 5.3.)
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An Infinitesimal approach to Lindeberg’s limit theorem 3

In our approach we investigate the solution X : Ω× [ t0 . . . T ]→ R of the infinitesimal
stochastic difference equation

(2) δXt = a(t,Xt) dt + σ(t,Xt) δWt with initial state Xt0 = x0.

Here (δWt)t∈[ t0...T ) denotes an arbitrary infinitesimal model of white noise (see Def-
inition 3.11). Note that our approach does not rely on the concept of Ito integration.
We also do not use martingale arguments, Ito’s formula, Girsanov’s theorem, Nelson’s
reduction algorithm, Loeb measures, combinatorics or the Fourier-Laplace transform.

The existence of solutions u : [t0,T]× R→ R of Kolmogorov’s backward equation

(3)
∂u(t, x)
∂t

+ a(t, x)
∂u(t, x)
∂x

+
1
2
σ2(t, x)

∂2u(t, x)
∂x2 = 0, u(T, x) = f (x)

constitutes the starting point of our investigation. Sufficient regularity conditions on the
functions a, σ and f that grant the existence of a solution4 of Kolmogorov’s backward
equation are provided in [34] Theorem 3.2.1 and [18] Theorem 4.8.6. An analytic
existence proof can be found in [13] Section 6.

Given a random variable Z we denote its expectation by E[Z]. The solution u(t, x) of
Kolmogorov’s backward equation is (following [31] Section 5.1) linked to (1) via

(4) u(t0, x0) = E[f ◦ YT ].

We prove (see Theorem 4.13), that the solution X of (2) fulfills

(5) E[f ◦ XT ] ≈ u(x0, t0).

The closeness of E[f ◦ XT ] and u(x0, t0) expressed by (5) is the starting point for all
further investigations. It enables us to prove a Lindeberg type limit theorem for discrete
time processes that approximate diffusion processes. It further shows together with (4)
that

E[f ◦ XT ] ≈ E[f ◦ YT ]

(provided that the expectations E[f ◦ XT ], E[f ◦ YT ] and the solution u of (3) exist).

4If u(t, x) is a solution of the terminal value problem (3), then v(t, x) := u(T + t0 − t, x)
solves

∂v(t, x)
∂t

= a(t, x)
∂v(t, x)
∂x

+
1
2
σ2(t, x)

∂2v(t, x)
∂x2 , v(t0, x) = f (x)
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2 Preliminaries and Notation

We use the notation provided by internal theories to formulate our mathematical results.
The notation can be obtained form the st-∈-languages IST or BST (see [26], [10], [15]).
We suppose that the reader is familiar with the notion of standard, internal and external
formula and with the principles of transfer, idealization and standardization and some
elementary consequences of these notions and principles (see [26], [10]).

We denote by st or st(.) the unary predicate standard. We denote by N and R the set
of all natural numbers {0, 1, 2, . . . } and the set of all real numbers, respectively, i.e.,
the sets N and R contain standard as well as nonstandard elements. We use the term
"set" synonymously with the term "internal set". We say that a set S is countable if S
is either finite or possesses the cardinality of N.

For notational convenience we also write nst(x) instead of ¬st(x), we write ∀stxφ(x)
instead of ∀x(st(x)⇒ φ(x)) and ∃stxφ(x) instead of ∃x(st(x)∧φ(x)). The abbreviations
∀nstxφ(x) and ∃nstxφ(x) are used in an analogous manner.

Notation 2.1 Let (X, ‖.‖) be a normed space. We say that x ∈ (X, ‖.‖) is limited
and write ‖x‖ << +∞ if ∃stn ∈ N such that ‖x‖ < n; otherwise we say that x is
unlimited. In the case that (X, ‖.‖) = (R, |.|) we also write −∞ << x << +∞
instead of ‖x‖ << +∞. For positive unlimited r ∈ (R, |.|) we write r ≈ ∞. We say
that x ∈ (X, ‖.‖) is infinitely small or infinitesimal if ∀stε > 0 ‖x‖ < ε. If x − x′ is
infinitely small we write x ≈ x′ . Thus if x is infinitely small we write x ≈ 0. Note
that all the concepts introduced above are external.

Notation 2.2 We further introduce a symbol �. It is used as a replacement character
for a non explicitly stated infinitesimal quantity. Let F(ξ) and G(ξ) denote functions
of a variable ξ that are possibly constant in ξ . We define

(6) F(�) ≤ G(�) :⇐⇒ ∀o1 ≈ 0 ∃o2 ≈ 0 such that F(o1) ≤ G(o2).

The symbol � is used in the same manner if the character ≤ in (6) is replaced by the
character =. For example let F(ξ) be defined by F(ξ) := E[δWt] independent of ξ
and let G(ξ) := ξ · δt . Then

E[δWt] = � · δt ⇐⇒ ∃o2 ≈ 0 such that E[δWt] = o2 · δt.

Further our definition implies that

(∀stε > 0) (� ≤ ε)

Journal of Logic & Analysis 1:2 (2009)



An Infinitesimal approach to Lindeberg’s limit theorem 5

since this is just an abbreviation of (∀stε)(∀o ≈ 0) (o ≤ ε). We also note that

F(�) ≤ G(�) ∧ G(�) ≤ H(�) ⇒ F(�) ≤ H(�)

and
F(�) ≤ G(�) ⇒ F(�) + H(�) ≤ G(�) + H(�).

For the use of the symbol � as an external number (differing from our use) see [19].

The following proposition is an elementary consequence of idealization. We state
it, since we are going to use it explicitly in the proofs of Lemma 4.7, Theorem 5.2
and Lemma A.2 (and thus implicitly in the proofs of Theorem 4.13, Theorem 5.4 and
Example 6.6).

Proposition 2.3 Let φ be an internal formula. Then

∀stε ∈ (0,∞) φ(ε) =⇒ ∃ε ∈ (0,∞) such that ε ≈ 0 ∧ φ(ε).

For convenience of the reader we state the definitions of the important concepts of
S-convergence and uniform S-continuity.

Definition 2.4 A sequence is a function defined on N. Let (Y, ‖.‖) be a normed space.
We say that the sequence

(yn)n∈N ∈ YN S-converges to y∞ ∈ (Y, ‖.‖), iff ∀nsth ∈ N yh ≈ y∞.

Let Z be a subset of a normed space (X, ‖.‖). We say that a function f : Z → Y is
uniformly S-continuous, if

∀z, z0 ∈ Z ∧ z ≈ z0 ⇒ f (z) ≈ f (z0).

(We use the term "uniformly S-continuous" since "S-continuity" has been used in
different ways, i.e., compare with [29] Theorem 4.5.8 and [10] Definition 1.3.4).

Remark 2.5 A standard sequence (xn)n∈N S-converges if and only if there exists a
standard x∞ such that (xn)n∈N converges (in the usual ZFC-based sense) to x∞ . A
standard function f is uniformly S-continuous if and only if it is uniformly continuous
in the usual sense. (Both assertions follow from the permanence principle [underspill
and overspill] and transfer.)

Definition 2.6 Let t0,T ∈ R be limited. A near interval [ t0 . . . T ] is a finite subset
of [t0,T] that contains {t0,T} and further fulfills

s, s′ ∈ [t0,T] ∧ s < s′ ∧ st(s), st(s′) =⇒ ∃t ∈ [ t0 . . . T ] ∩ (s, s′).

We further use the following notations for near intervals: [ t0 . . . T ) := [ t0 . . . T ]\{T},
( t0 . . . T ] := [ t0 . . . T ] \ {t0} and ( t0 . . . T ) := [ t0 . . . T ] \ {t0,T}.
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3 Some probabilistic concepts

For the purpose of simplicity we suppose that the random variables under consideration
are defined on a countable set Ω, endowed with a probability P determined point wise
by its values P({ω}), i.e., P is defined on the power set P(Ω) of Ω, P is countably
additive and thus determined by its values P({ω}) on {{ω} | ω ∈ Ω}.

Let (X,A) be an arbitrary measurable space. We note that any internal function
f : (Ω,P(Ω)) 7→ (X,A) is measurable. Thus our restriction to countable Ω relieves us
from measurability arguments. However there is a close relation between internal and
Loeb-measurable mappings for measure spaces [8], [21] and stochastic processes [12]).

Distribution and Convergence of Random Variables

Definition 3.1 We denote by C0 the space of all continuous functions f : R → R
with compact support. For n ∈ N ∪ {∞} we denote by Cn the space of all n-times
continuously differentiable functions f : R→ R. We further let Cn

0 := Cn ∩ C0 . Note
that f ∈ Cn

0 implies that all derivatives of f up to order n are uniformly continuous.

Definition 3.2 (Compare with [27] Chapter 7.) We say that a random variable Y
is almost limited if for any standard ε > 0 there exists a standard n ∈ N such that
P(Y ∈ [−n, n]) > 1− ε.

Definition 3.3 Let Y : Ω → R be an almost limited random variable and let Q :
R → [0, 1] be a monotone increasing function such that 0 = limx→−∞Q(x) = 1 −
limx→∞Q(x). We say that Y possesses approximately a law (distribution, cumulative
distribution function) Q : R→ [0, 1], or we say that Y is approximately Q-distributed,
if

(7) (∀stf ∈ C0)
(
E[f ◦ Y] ≈

∫
f (y) dQ(y)

)
,

where
∫

f (y) dQ(y) denotes the Riemann-Stieltjes integral of f with respect to Q and
E[f ◦ Y] denotes the expectation of the random variable f ◦ Y : Ω→ R.

Proposition 3.4 Let Y : Ω → R be an almost limited random variable. Y possesses
approximately a distribution Q if and only if

(8) (∀stg ∈ C∞0 )
(
E[g ◦ Y] ≈

∫
g(y) dQ(y)

)
.
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An Infinitesimal approach to Lindeberg’s limit theorem 7

Proof: All we have to show is, that (8) implies (7). By the Stone-Weierstrass-Theorem
and transfer any standard f ∈ C0 can be uniformly approximated up to ε

3 for an arbitrary
standard ε > 0 by a standard function g ∈ C∞0 . Thus (8) implies

(9) |E[f ◦ Y]−
∫

f dQ| ≤ |E[g ◦ Y]−
∫

g dQ|+ 2
ε

3
≤ �+ 2

ε

3
≤ ε.

Since ε > 0 was assumed to be standard but otherwise arbitrary and f ∈ C0 was an
arbitrary standard function, we obtain that (9) implies (7). 2

Definition 3.5 Let (Yi)i∈N be a sequence of almost limited random variables Yi : Ω→
R. We say that (Yi)i∈N S-converges approximately to Y∞ : Ω→ R if

(∀stf ∈ C0) (∀nsti ∈ N) (E[f ◦ Yi] ≈ E[f ◦ Y∞]).

Proposition 3.6 Let (Yi)i∈N be a sequence of almost limited random variables Yi :
Ω→ R. (Yi)i∈N S-converges approximately to a random variable Y∞ : Ω→ R if and
only if

(∀stg ∈ C∞0 ) (∀nsti ∈ N) (E[g ◦ Yi] ≈ E[g ◦ Y∞]).

The random variable Y∞ is again almost limited.

Proof: The proof of Proposition 3.6 is analogous to the proof of Proposition 3.4. 2

Proposition 3.7 Let a sequence (Yi)i∈N of almost limited random variables Yi and
a standard sequence (Qi)i∈N of distributions Qi be given. Suppose that Yi is Qi -
distributed. Then (Qi)i∈N converges weakly to a standard distribution Q∞ : R → R,
i.e.,

(10) (∀f ∈ C0) ( lim
i→∞

∫
f dQi =

∫
f dQ∞)

if and only if

(11) (∀stg ∈ C∞0 ) (∀nsti ∈ N) (E[g ◦ Yi] ≈
∫

g dQ∞).

Proof: (10) holds by transfer if and only if

(∀stf ∈ C0) ( lim
i→∞

∫
f dQi =

∫
f dQ∞),

thus further by Remark 2.5 if and only if

(∀stf ∈ C0) (∀nsti ∈ N) (
∫

f dQi ≈
∫

f dQ∞)

Journal of Logic & Analysis 1:2 (2009)
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and further by Definition 3.3 if and only if

(∀stf ∈ C0) (∀nsti ∈ N) (E[f ◦ Yi] ≈
∫

f dQ∞)

and finally by Proposition 3.4 if and only if (11) holds. 2

Remark 3.8 For the definition of weak convergence see [30] definition B.80. For
results on weak convergence in the setting of Loeb measure spaces consult [2].

Remark 3.9 We may define (analogous to [27] Chapter 17) that two random variables
X,Y : Ω → R are nearly equivalent if for all limited, S-continuous h : R → R we
are given that E[h ◦ X] ≈ E[h ◦ Y]. Suppose that X : Ω → R is an almost limited
random variable and let Y be a second random variable. By the fact that for any limited,
S-continuous h : R → R, any standard ε > 0 and any standard n ∈ N there exists a
standard f ∈ C0 such that

∀x ∈ [−n, n] |f (x)− h(x)| ≤ ε

we obtain that X and Y are nearly equivalent if and only if

∀stf ∈ C0 E[f ◦ X] ≈ E[f ◦ Y]

This relates the concept of near equivalence to the concept of approximate S-convergence
and further shows that for almost limited X the random variables X and Y are nearly
equivalent if and only if they possess a common distribution Q.

Stochastic processes

Notation 3.10 For convenience of notation we switch freely between the following
formulations of the concept of a stochastic process X with time [ t0 . . . T ] and state
space M :

X : Ω× [ t0 . . . T ]→ M, X : Ω→ M[ t0...T ) and X : [ t0 . . . T )→ MΩ.

Definition 3.11 Let [ t0 . . . T ] be a near interval and let (δWt)t∈[ t0...T ) denote an
indexed family of independent random variables δWt : Ω 7→ R with laws νt such that

E[δWt] = � · δt , Var(δWt) = (1 +�) · δt

and such that

(12) (∃η ≈ 0)

 ∑
t∈[ t0...T )

[∫
|y|≥η

y2 dνt(y)

]
< η

 .
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Define further a stochastic process W by

Wt :=
∑

s∈[ t0...t )

δWs.

We say that (δWt)t∈[ t0...T ) is a model of white noise and that W is a model of Brownian
motion.

Remark 3.12 Note that (12) is an infinitesimal formulation of the Lindeberg condition.
It is equivalent with the near Lindeberg condition (14.1) in [27]. A precise statement
of the equivalence together with a proof is provided in the appendix of this article.

Definition 3.13 Let [ t0 . . . T ] be a near interval and let (δWt)t∈[ t0...T ) be a model of
white noise. Let functions

a : [t0,T]× R→ R and σ : [t0,T]× R→ R

be given. Let
[K(t, x)](ω) := x + a(t, x) δt + σ(t, x) δWt(ω).

Let x0 ∈ R be fixed. Let a stochastic process X : Ω × [ t0 . . . T ] → R be recursively
defined by

Xt0(ω) := x0 and Xt+δt(ω) := [K(t,Xt(ω))](ω).

We let δXt := Xt+δt − Xt and say that the process X is the solution of the infinitesimal
stochastic difference equation

δXt = a(t,Xt) δt + σ(t,Xt) δWt.

with initial condition Xt0 = x0 .

Journal of Logic & Analysis 1:2 (2009)
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4 Diffusion Equations and Processes

Definition 4.1 Given a function u : [t0,T] × R → R, we say that u is Cm,n
b if u is a

bounded uniformly continuous function such that all its derivatives up to order m with
respect to its first variable and all its derivatives up to order n with respect to its second
variable are bounded and uniformly continuous (as functions of both variables).

Provided that the respective derivatives exist, we introduce the following notations:

Notation 4.2 Let ψ : R→ R. We denote by ψ′(x) the first order derivative of ψ at x
and by ψ′′(x) the second order derivative of ψ at x . Given a function u : [t0,T]×R→
R, we denote the partial derivative of u with respect to its first variable at (t, x) by

∂u(s, x)
∂s

∣∣∣∣
s=t

resp. for simplicity of notation by
∂u(t, x)
∂t

.

We denote the first and second order derivatives of u with respect to its second variable
by

∂u(t, y)
∂y

∣∣∣∣
y=x

and
∂2u(t, y)
∂2y

∣∣∣∣
y=x

.

resp. for simplicity of notation by

∂u(t, x)
∂x

and
∂2u(t, x)
∂2x

.

Proposition 4.3 Let x ∈ R and let v : R → R be a function such that v(x) = 0 and
v′(x) = 0. Suppose further that x 7→ v′′(x) is S-continuous and limited. Then

y ≈ 0 =⇒ v(x + y) =
1
2

(v′′(x) +�) · y2.

2

Definition 4.4 Given a one times differentiable function v : R→ R, we let

[Rxv](x + y) := v(x + y)− v(x)− v′(x) · y.

and call Rxv the remainder of v at x .

Definition 4.5 We denote by (Lt : C2 → C0)t∈[t0,T] a standard indexed family of
differential operators of the form

[Ltψ](x) :=
1
2
ψ′′(x) · b(t, x) + ψ′(x) · a(t, x) ,

Journal of Logic & Analysis 1:2 (2009)
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with a : [t0,T] × R → R and b : [t0,T] × R → [0,∞) bounded functions. Let
[ t0 . . . T ] be a near interval. Let (Zt,x)(t,x)∈[ t0...T ]×R be an indexed family of random
variables

Zt,x : Ω→ R with laws νt,x.

We say that (Zt,x)(t,x)∈[ t0...T ]×R is associated with the family of operators (Lt)t∈[t0,T] if:

(i) E[Zt,x] = (a(t, x) +�) · δt

(ii) Var(Zt,x) = (b(t, x) +�) · δt .

There exists an infinitesimal η > 0 such that

(iii)
∑

t∈[ t0...T ) supx∈R

[∫
|y|≥η y2 dνt,x(y)

]
< η.

Remark 4.6 Let

(13) δηt := sup
x∈R

[∫
|y|≥η

y2 dνt,x(y)

]
≥ 0.

Then (iii) of Definition 4.5 becomes

(14)
∑

t∈[ t0...T )

δηt < η ≈ 0.

Let Z̃t,x be the random variable defined by

(15) Z̃t,x(ω) :=

Zt,x(ω) if |Zt,x(ω)| < η and

0 else.

Then by (13) and (15)

(16) E[Z̃2
t,x] = E[Z2

t,x] + Ot,x with |Ot,x| ≤ δηt.

Further

E[Z2
t,x] = Var(Zt,x) + E[Zt,x]2

= (b(t, x) +�) · δt + (a(t, x) +�)2 · (δt)2.
(17)

Journal of Logic & Analysis 1:2 (2009)



12 Heinz Weisshaupt

Lemma 4.7 Let (Lt)t∈[t0,T] be a standard indexed family of differential operators that
fulfills the hypotheses of Definition 4.5. Let f : R → R be a standard bounded C2

function. Suppose that there exists a C1,2
b solution u : [t0,T]×R→ R of the terminal

value problem

(18) [Ltu(t, .)](x) +
∂u(t, x)
∂t

= 0, u(T, x) = f (x).

Let [ t0 . . . T ] be a near interval. Let (Zt,x)(t,x)∈[ t0...T ]×R be an indexed family of
random variables that is associated with the family of operators (Lt)t∈[t0,T] . Let
û : [ t0 . . . T ]× R→ R be defined by backward induction on [ t0 . . . T ] by

(19) û(T, x) := f (x) and û(t, x) := E[û(t + δt, x + Zt,x)].

Then

(20) for any (s, x) ∈ [ t0 . . . T ]× R we have û(s, x) ≈ u(s, x).

Remark 4.8 Note that by standardness of (Lt : C2 → C0)t∈[t0,T] it follows that b(., .)
and a(., .) are standard functions and that [t0,T] is a standard interval.

Corollary 4.9 The solution u(., .) of (18) presumed in Lemma 4.7 is standard and
unique.

Proof: By standardness of (Lt)t∈[t0,T] and f , and by the existence of a continuous
solution u of (18), we obtain by transfer that there exists a continuous standard solution
u of (18). For a given family (Zt,x)(t,x)∈[ t0...T ) of random variables Zt,x : Ω → R
associated with (Lt)t∈[ t0...T ] the function û is well defined. Thus there exists at most
one continuous standard function u : [ t0 . . . T ]× R→ R such that (20) holds. 2

Remark 4.10 Note that uniqueness results for solutions of diffusion equations (com-
pare with [33] sections 11.3 and 11.5) are non trivial.

Notation 4.11 For simplicity of notation we write ut(x) instead of u(t, x) if this seems
convenient to us.

Remark 4.12 The proof of Lemma 4.7 following this remark consists of four parts.
In part I we collect facts concerning the solution u of (18) that are used in part II.
Letting γt,x := E[u(t + δt, x + Zt,x)] − u(t + δt, x) we obtain in part II a bound for
|γt,x − δt · [Ltu(t + δt, .)] (x)| (compare with (28)). This result of part II is used in part
III to obtain a bound for |E[u(t + δt, x + Zt,x)]− u(t, x)| (compare with (32)). From
the bound in part III we obtain finally a bound of |û(s, x)− u(s, x)| (compare with (36))
in part IV.
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An Infinitesimal approach to Lindeberg’s limit theorem 13

Proof of Lemma 4.7:

Part I: Note that by Definition 4.4

(21) [Rxut+δt](x + y) = ut+δt(x + y)− ut+δt(x)− u′t+δt(x) · y.

We further remark that

(22) [Rxut+δt]′′(x + y) = u′′t+δt(x + y),

(23) [Rxut+δt](x) = 0 and [Rxut+δt]′(x) = 0.

By the hypothesis that u ∈ C1,2
b and the fact that u(., .) is standard by Corollary 4.9,

there exists a standard ρ ∈ R such that

(24) ∀(t, x) ∈ [t0,T]× R |ut+δt(x)|, |u′t+δt(x)|, |u′′t+δt(x)| < ρ

and for any t ∈ [t0,T] we have that

(25) x 7→ u′′t (x) is uniformly S-continuous.

Note that by (22), (23) and (24) we obtain

(26) [Rxut+δt](x + y) ≤ 1
2
ρ y2.

Let

(27) γt,x := E[u(t + δt, x + Zt,x)]− u(t + δt, x).

Part II: We show that for x ∈ R and t ∈ [ t0 . . . T )

(28) |γt,x − δt · [Ltu(t + δt, .)] (x)| ≤ δηt · c + δt · �

with

(29) c :=
1
√
η
≈ ∞.

To do this we have to show that for x ∈ R and t ∈ [ t0 . . . T )

(30) γt,x ≤ δηt · c + δt · � + δt [Ltu(t + δt, .)] (x)

and

(31) γt,x ≥ − (δηt · c + δt · �) + δt [Ltu(t + δt, .)] (x).

Since the proofs of (30) and (31) are completely analogous, we just prove (30) and
regard (31) and thus further (28) as being proved.
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14 Heinz Weisshaupt

Let now x ∈ R and t ∈ [ t0 . . . T ) be arbitrarily given. Then

γt,x = E[u(t + δt, x + Zt,x)]− u(t + δt, x)

(a)= E[[Rxut+δt](x + Zt,x)] + E[u′t+δt(x) · Zt,x]

(b)=
∫
|y|≥η

[Rxut+δt](x + y) dνt,x(y)
∫
|y|<η

[Rxut+δt](x + y) dνt,x(y)

+ u′t+δt(x) · (a(t, x) +�) · δt

(c)
≤ 1

2
ρ · sup

x∈R

∫
|y|≥η
|y|2 dνt,x(y) +

∫
|y|<η

1
2
·
[
u′′t+δt(x) +�

]
· y2 dνt,x(y)

+ δt · u′t+δt(x) · (a(t, x) +�)

(d)=
1
2
ρ · δηt +

1
2
·
[
u′′t+δt(x) +�

]
· E[Z̃2

t,x] + δt · u′t+δt(x) · (a(t, x) +�)

(e)= δηt ·
1
2
ρ+

1
2

[u′′t+δt(x) +�] · (E[Z2
t,x] + Ot,x) + δt · u′t+δt(x) · (a(t, x) +�)

(f )
≤ δηt ·

1
2
ρ+

1
2

[u′′t+δt(x) +�] · Ot,x +
1
2

[u′′t+δt(x) +�] · [(b(t, x) +�) · δt]

+
1
2

[u′′t+δt(x) +�] · [(a(t, x) +�)2 · (δt)2] + δt · u′t+δt(x) · (a(t, x) +�)

(g)
≤ δηt ·

1
2
ρ+ δηt ·

1
2

[ρ+ 1] + δt · 1
2

[u′′t+δt(x) +�] · (b(t, x) +�)

+ δt · �+ δt · u′t+δt(x) · (a(t, x) +�)

(h)
≤ δηt · [ρ+ 1] + δt · �+ δt · 1

2
u′′t+δt(x) · b(t, x) + δt · u′t+δt(x) · (a(t, x))

(i)
≤ δηt · c + δt · �+ δt · [Ltu(t + δt, .)] (x).

The equality (a) follows from an application of (21), while (b) is obtained by splitting
E[[Rxut+δt](x+Zt,x)] into two integrals and by an application of Definition 4.5 (i). The
inequality (c) follows from an application of (26), and by (22), (23), Proposition 4.3
and (25). The equality (d) follows by an application of (13) and (15) while equality (e)
is obtained by (16). We further obtain (f) by the use of (17) and (g) by application of
(16) and (24). The relation (h) is obtained by calculation and rearrangement of terms,
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An Infinitesimal approach to Lindeberg’s limit theorem 15

while (i) follows from the fact that c ≈ ∞ and the definition of L.

Thus (30) and thus further (28) has been proved.

Part III: We show that

(∀x ∈ R)
(
|E[u(t + δt, x + Zt,x)]− u(t, x)| ≤ δηt · c + δt · �

)
.(32)

Since we assumed that u ∈ C1,2
b we have that t 7→ u′t(x), t 7→ u′′t (x) are uniformly

S-continuous mappings and thus we obtain that

(33) | [Ltu(t + δt, .)] (x)− [Ltu(t, .)] (x)| = | [Lt(u(t + δt, .)− u(t, .))] (x)| ≤ �

From (28) and (33) we obtain for x ∈ R and t ∈ [ t0 . . . T ) that

|γt,x − δt · [Ltu(t, .)] (x)| ≤ δηt · c + δt · �(34)

From (18) and

u(t + δt, x)− u(t, x) = δt · ∂u(t, x)
∂t

+ δt · �

we obtain for x ∈ R and t ∈ [ t0 . . . T )

(35) u(t + δt, x)− u(t, x) = − δt · [Ltu(t, .)](x) + δt · �.

From (27), (34) and (35) we obtain for x ∈ R and t ∈ [ t0 . . . T ) that

|E[u(t + δt, x + Zt,x)]− u(t, x)|

= |E[u(t + δt, x + Zt,x)]− u(t + δt, x) + u(t + δt, x)− u(t, x)|

= |γt,x − δt · [Ltu(t, .)](x)] + δt · �| ≤ δηt · c + δt · �.

i.e., (32) has been proved.

Part IV: We prove now by backward induction on [ t0 . . . T ] that for s ∈ [ t0 . . . T ]

(36) (∀x ∈ R)

|û(s, x)− u(s, x)| ≤
∑

r∈[ s...T )

[δηr · c + δr · �]

 .

Since (36) is external we can not apply (internal) induction directly to (36). We
therefore replace (36) by an external family of formulas as follows: For any standard
ε > 0 we consider

(ε) (∀x ∈ R)

|û(s, x)− u(s, x)| ≤
∑

r∈[ s...T )

[δηr · c + δr · ε]

 .
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16 Heinz Weisshaupt

We prove (ε) by backward induction as follows:

In the case that s = T formula (ε) reduces by (18) and (19) to the tautology 0 ≤ 0.
To complete the proof of (ε) by backward induction we just have to show that if (ε)
holds true for s = t + δt , then (ε) holds true for s = t . Thus suppose that (ε) holds
for s = t + δt . From (19), (32) and the validity of (ε) in the case s = t + δt we obtain
that for x ∈ R

|û(t, x)− u(t, x)| = |E[û(t + δt, x + Zt,x)]− u(t, x)|

≤ |E[û(t + δt, x + Zt,x)]− E[u(t + δt, x + Zt,x)]|

+ |E[u(t + δt, x + Zt,x)]− u(t, x)|

≤ sup
z∈R
|û(t + δt, z)− u(t + δt, z)| + |E[u(t + δt, x + Zt,x)]− u(t, x)|

≤
∑

r∈[ t+δt...T )

[δηr · c + δr · ε] + δηt · c + δt · �

≤
∑

r∈[ t...T )

[δηr · c + δr · ε],

i.e.,

|û(t, x)− u(t, x)| ≤
∑

r∈[ t...T )

[δηr · c + δr · ε](37)

holds. Thus application of (internal) induction to (37) shows that (ε) holds for any
s ∈ [ t0 . . . T ]. Since the ε in our consideration was assumed to be standard but
otherwise arbitrary, we obtain from Proposition 2.3 that (36) holds for all s ∈ [ t0 . . . T ].
(36) implies by (14) and (29) that (20) holds. 2

Theorem 4.13 Let (Lt)t∈[t0,T] be a standard indexed family of differential operators
that fulfills the hypotheses of Definition 4.5. Let f : R→ R be a standard bounded C2

function. Suppose that there exists a C1,2
b solution u : [t0,T]×R→ R of the terminal

value problem

[Ltu(t, .)](x) +
∂u(t, x)
∂t

= 0, u(T, x) = f (x).

Let [ t0 . . . T ] be a near interval and let (δWt)t∈[ t0...T ) be a model of white noise. Let

σ : [t0,T)× R→ R be such that σ2(., .) ≈ b(., .)
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An Infinitesimal approach to Lindeberg’s limit theorem 17

and let ã ≈ a. Let X be the solution of the infinitesimal stochastic difference equation

δXt = ã(t,Xt) δt + σ(t,Xt) δWt.

with initial condition Xt0 = x0 . Then

(38) E[f ◦ XT ] ≈ u(x0, t0).

Proof: Let us denote the conditional expectation of a random variable Y with respect
to a second random variable Z by E[Y | Z]. We apply Lemma 4.7 with

Zt,x := ã(t, x) δt + σ(t, x) δWt.

From the definition of û by (19) we obtain that

E[û(t + δt,Xt+δt)] = E[E[û(t + δt,Xt+δt) | Xt]] =

E[E[û(t + δt,Xt + Zt,Xt ) | Xt] = E[û(t,Xt)].
(39)

Induction over (39) and u(T, x) = f (x) gives

(40) E[f ◦ XT ] = û(x0, t0).

Formula (40) gives together with the conclusion of Lemma 4.7 the approximate identity
(38). 2

Remark 4.14 Note that boundedness (and standardness) have been the only hypothe-
ses imposed on the functions a and b. Our proofs worked out mainly because of the
strong hypotheses that the solution u of (18) is a (standard) element of C1,2

b .

Remark 4.15 Since a, b, t0 and T are (by boundedness and standardness) limited,
we obtain that the random variables Xt - that constitute the stochastic processes under
consideration - fulfill −∞ << E[Xt], Var(Xt) <<∞. From this we obtain further by
[5] Theorem 2.11 that the random variables XT are almost limited.
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18 Heinz Weisshaupt

5 Lindeberg’s Theorem and related results

We consider now equation (18) in the case that b(t, x) = 1, a(t, x) = 0 and f ∈ C2
0 ,

i.e., we consider the following special case of the terminal value problem (18):

(41)
1
2
· ∂

2u(t, x)
∂x2 +

∂u(t, x)
∂t

= 0, u(T, x) = f (x).

A solution of the terminal value problem (41) on [t0,T]×R is provided by the function
u given by

(42) u(t, x) =
∫

R
f (y)

1√
2π(T − t)

e−
(y−x)2

2(T−t) dy

for (t, x) ∈ [t0,T) × R and u(T, x) = f (x). If φ denotes the density function of the
N(0, 1) distribution, then also

u(t, x) =
∫

y∈R

1√
T − t

φ

(
y− x√
T − t

)
f (y) dy.

Definition 5.1 Let Ξ = (ξi,j)(i,j)∈N×N be an array of random variables ξi,j ∈ R.
Suppose that there exists a function i 7→ Ji from N to N such that limi→∞ Ji =∞ and
that Var(ξi,j) = 0 ≡ ξi,j if and only if j ≥ Ji . Suppose further that for any fixed i the
vector (ξi,j))j∈N consists of independent random variables. We call Ξ a triangular array
of independent random variables with sum-variables ζi :=

∑
0≤j≤Ji−1 ξi,j =

∑
j∈N ξi,j .

The following theorem is known as Lindeberg’s limit theorem. (Compare with [11]
Section 9.6.)

Theorem 5.2 Let Ξ be a triangular array of independent random variables with sum-
variables ζi . Suppose that E[ξi,j] = 0 for all i, j ∈ N. Suppose further that

(43) lim
i→∞

Var(ζi) = σ2

and that

(44) (∀ε > 0)(∃N ∈ N)(∀i > N)

Ji−1∑
j=0

E[ξ2
i,j · 1I{|ξi,j|≥ε}] < ε

 .

Then the sequence of distributions of (ζi)i∈N converges weakly to N(0, σ2).
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Proof: The theorem stated above is a theorem in the terms of standard mathematics.
We can therefore by transfer suppose that the theorem is stated with the addition that
any object named in the theorem is standard. Especially we can replace (44) by

(45) (∀stε > 0)(∃stN ∈ N)(∀i > N)

Ji−1∑
j=0

E[ξ2
i,j · 1I{|ξi,j|≥ε}] < ε


and assume that (ζi)i∈N is a standard sequence. Assertion (45) implies that

(46) (∀nsti ∈ N)(∀stε > 0)

Ji−1∑
j=0

E[ξ2
i,j · 1I{|ξi,j|≥ε}] < ε

 .

From (46) we obtain by Proposition 2.3 that

(47) (∀nsti ∈ N)(∃ε ≈ 0)

Ji−1∑
j=0

E[ξ2
i,j · 1I{|ξi,j|≥ε}] < ε

 .

From (43) we obtain by standardness of (ζi)i∈N and Remark 2.5 that

(∀nsti ∈ N) ( Var(ζi) = σ2 +�).

Choose an arbitrary nonstandard i ∈ N. Let for j ∈ {0, . . . , Ji − 1} increments δtj be
given, such that

δtj := Var(ξi,j) · (1 +�) and
Ji−1∑
j=0

δtj = σ2

and define points tj by

(48) t0 := 0, tj+1 := tj + δtj, T := tJi = σ2

Let
[ t0 . . . T ] = {tj | 0 ≤ j ≤ Ji}

Let δWtj = ξi,j for 0 ≤ j ≤ Ji . Then (δWt)t∈[ t0..., T) is a model of white noise. Let W
be the model of Brownian motion associated with (δWt)t∈[ t0...T ) . Then

(49) WT = ζi

and W is the solution X of the infinitesimal stochastic difference equation δXt =
a(t, x) δt + b(t, x) δWt with a(t, x) = 0 and b(t, x) = 1. Thus by Theorem 4.13 we
have that for any standard f ∈ C2

0

(50) E[f ◦WT ] ≈ u(0, 0)
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with u the solution (42) of the terminal value problem (41). Thus we obtain from (48),
(49), (50) and (42) that

E[f ◦ ζi] = E[f ◦WT ] ≈ u(0, 0) =
∫

R
f (y)

1√
2πσ

e−
y2

2σ2 dy.(51)

By (51), the fact that i ∈ N was supposed to be nonstandard but otherwise arbitrarily
chosen and by Proposition 3.7 the standard sequence of distributions of the (by Remark
4.15) almost limited random variables (ζi)i∈N converges weakly to N(0, σ2). 2

Theorem 4.13 provides together with the existence of solutions of Kolmogorov’s back-
ward equation a general limit theorem for diffusions. Since our result (Theorem 5.4
stated below) includes a Lindeberg condition, we call it a Lindeberg type limit theorem.

Definition 5.3 Let Ξ = (ξi,j)(i,j)∈N×N be an infinite triangular array of independent
random variables, with sum variables ζi . Let i 7→ Ji denote the function involved
in the definition of a triangular array (Definition 5.1). We say that Ξ is a triangular
approximation of white noise on [t0,T] if:

∀i, j ∈ N E[ξi,j] = 0,

(52) ∀i ∈ N Var(ζi) = (T − t0)

and

(∀ε > 0)(∃N ∈ N)(∀i > N)

Ji−1∑
j=0

E[ξ2
i,j · 1I{|ξi,j|≥ε}] < ε

 .

Theorem 5.4 Let Ξ be a triangular approximation of white noise on [t0,T]. Let
(Lt)t∈[t0,T] be a family of differential operators that fulfill - with the exception of
standardness - all hypotheses of Definition 4.5. Let

σ : [t0,T]× R→ R be such that σ2 = b.

Let ∆ti,j = Var(ξi,j). Let ti,j be given by ti,0 = t0 and ti,j+1 = ti,j + ∆ti,j . Let
stochastic processes Xi recursively be defined by:

(53) Xi(t0) = x0, ∆Xi(ti,j) = a(ti,j,Xi(ti,j)) ∆ti,j + σ(ti,j,Xi(ti,j)) ξi,j

and
Xi(ti,j+1) = Xi(ti,j) + ∆Xi(ti,j).

Suppose further that for any f ∈ C∞0 there exists a C1,2
b solution uf (., .) of the terminal

value problem (18). Then ti,Ji = T independent of i and

(54) uf (t0, x0) = lim
i→∞

E[f ◦ Xi(T)].
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Proof: That ti,Ji = T independent of i ∈ N follows from the recursive definition of ti,j
and (52).

The theorem stated above is solely stated in the terms of standard mathematics. We can
therefore by transfer suppose without loss of generality that any object named in the
theorem is standard. Thus again (47) holds. Choose an arbitrary nonstandard i ∈ N
and let [ t0 . . . T ] := {ti,j | 0 ≤ j ≤ Ji}. Let for any t = ti,j ∈ [ t0 . . . T ) random
variables δWt be given by δWt = ξi,j and let Xt := Xi,j(ti,j). Then (δWt)t∈[ t0...T ) is an
infinitesimal model of white noise and by (53) the stochastic process X = (Xt)t∈[ t0...T ]

is the solution of the infinitesimal stochastic difference equation

δXt = a(t,Xt) δt + σ(t,Xt) δWt.

with initial condition Xt0 = x0 . Application of Theorem 4.13 proves by its conclusion
(38) with u = uf that

uf (x0, t0) = u(x0, t0) ≈ E[f ◦ XT ] = E[f ◦ Xi(T)].

Since i was assumed to be nonstandard but otherwise arbitrarily chosen we obtain that

(55) ∀nsti ∈ N uf (x0, t0) ≈ E[f ◦ Xi(T)].

Since by our hypothesis - made at the begin of the proof - that all objects named in
the theorem are standard, the sequence (E[f ◦ Xi(T)])i∈N as well as the real number
uf (x0, t0) are standard. Thus by (55), by Definition 2.4 and Remark 2.5 we obtain that
limi→∞ E[f ◦ Xi(ti,Ji)] exists and that

uf (t0, x0) = lim
i→∞

E[f ◦ Xi(T)],

i.e., (54) holds and the theorem has been proved.

Remark 5.5 Suppose that the hypotheses of Theorem 5.4 are fulfilled and that the
family of operators (Lt)t∈[t0,T] is additionally standard. Then the sequence (Xi(T))i∈N
of (by Remark 4.15) almost limited random variables Xi(T) in Theorem 5.4 S-converges
approximately to a random variable X∞ such that for all f ∈ C∞0

uf (t0, x0) ≈ E[f ◦ X∞].

Proof: Apply Proposition 3.6 to (55).
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6 An Example

Remark 6.1 If we suppose that a(t, x) = 0, b(t, x) = 1 and let T − t0 := σ2 , then
Theorem 5.4 is closely related to Lindeberg’s limit theorem (Theorem 5.2). If we
replace hypothesis (43) in Theorem 5.2 by the stronger hypothesis

(56) ∀i ∈ N Var(ζi) = σ2

and apply T − t0 = σ2 then we end up with the hypotheses of Theorem 5.4 (in the
special case that a(t, x) = 0, b(t, x) = 1).

The conclusion (54) of Theorem 5.4 implies together with (42), a(t, x) = 0, b(t, x) = 1
and σ2 = T − t0 that (51) holds (if we let (t0, x0) := (0, 0)) and thus further that the
conclusion of Theorem 5.2 holds.

Thus we conclude that in the case a(t, x) = 0, b(t, x) = 1 and σ2 = T − t0 Theorem
5.4 implies Theorem 5.2 with the hypothesis (43) replaced by (56), i.e., Theorem 5.4
implies a weakened version of Theorem 5.2.

A more elaborate application of Theorem 5.4 for special coefficient functions a(., .)
and b(., .) is provided by an approximation of the infinitesimal stochastic difference
equations (for τ > 0)

δXt = − tanh(τ Xt)
(

1
τ

+
1
2
· τ

cosh2(τ Xt)

)
δt +

1
cosh(τ Xt)

δWt,(57)

with initial condition Xt0 = x0 , by the difference equations

Xi(0) = x0, ∆Xi(ti,j) = a(Xi(ti,j)) ∆ti,j + σ(Xi(ti,j)) ξi,j

with

a(x) = − tanh(τ x)
(

1
τ

+
1
2
· τ

cosh2(τ x)

)
,

σ(x) =
1

cosh(τ x)
and (ξi,j)i,j∈N a triangular approximation of white noise (Example 6.6 below). We
remark that the equations (57) are for small τ themself approximations of the Ornstein-
Uhlenbeck infinitesimal stochastic difference equation

δXt = −Xt δt + δWt.

Before we state Example 6.6 we prove some results (Proposition 6.2, Remark 6.3,
Proposition 6.4 and Corollary 6.5 stated below) that provide together with Theorem
5.4 the right setting for the proof of the validity of Example 6.6.
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Proposition 6.2 Let g ∈ C∞0 . A C1,2
b solution of the terminal value problem

(58)
1
2
· ∂

2v(t, y)
∂y2 − y

∂v(t, y)
∂y

+
∂v(t, y)
∂t

= 0, v(T, y) = g(y)

on the interval [t0,T] is for t ∈ [t0,T) provided by the function

(59) v(t, y) =
∫

z∈R

1√
π(1− e−2(T−t))

e
− (z−e−(T−t)y)2

(1−e−2(T−t)) g(z) dz.

Proof: Straightforward calculation shows that (59) is a solution of (58).

Remark 6.3 If φ denotes the density function of the N(0, 1) distribution, then the
function v of equation (59) can be expressed as

v(t, y) =
∫

z∈R

1√
1
2 (1− e−2(T−t))

φ

 z− e−(T−t)y√
1
2 (1− e−2(T−t))

 g(z) dz.

Consequently, if Z denotes an N
(
e−(T−t)y, 1

2 (1− e−2(T−t))
)

distributed random vari-
able, then v(t, y) ≈ E[g ◦ Z].

Proposition 6.4 A function v : [t0,T] × R → R fulfills (58) if and only if u(t, x) =
v(t, 1

τ sinh (τ x)) fulfills the terminal value problem

∂u(t, x)
∂t

− tanh(τ x)
(

1
τ

+
1
2
· τ

cosh2(τ x)

)
∂u(t, x)
∂x

+
1
2
· 1

cosh2(τ x)
∂2u(t, x)
∂x2 = 0,

u(T, x) = g
(

1
τ

sinh(τ x)
)
.(60)

Thus there exists a one-one correspondence between the solutions of (58) and (60).

Proof: This follows with y = 1
τ sinh(τ x) from

∂v(t, y)
∂t

=
∂u(t, x)
∂t

,
∂v(t, y)
∂y

=
1

cosh(τ x)
∂u(t, x)
∂x

and

1
2
· ∂

2v(t, y)
∂y2 = −1

2
· τ tanh(τ x)

cosh2(τ x)
∂u(t, x)
∂x

+
1
2
· 1

cosh2(τ x)
∂2u(t, x)
∂x2 . 2

Corollary 6.5 There exists a unique C1,2
b solutions of the terminal value problem (60).
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Proof: A solution v(t, y) of (58) exists by Proposition 6.2 and thus by Proposition 6.4
there also exists a solution u(t, x) = v(t, 1

τ sinh(τ x)) of (60). The functions

a(t, x) = − tanh(τ x)
(

1
τ

+
1
2
· τ

cosh2(τ x)

)
and b(t, x) =

1
cosh2(τ x)

are for any fixed τ ∈ (0,∞) bounded and calculation gives that the solution u of (60)
- obtained from the solution (59) of equation (58) by Proposition 6.4 - is an element
of C1,2

b . Thus we obtain by Corollary 4.9 and transfer that the solution u(t, x) of the
terminal value problem (60) is unique.

Example 6.6 Let τ ∈ (0,∞) be standard and let Ξ be a triangular approximation of
white noise on [t0,T]. Let a : [t0,T]× R→ R and σ : [t0,T]× R→ R be given by

a(x) = − tanh(τ x)
(

1
τ

+
1
2
· τ

cosh2(τ x)

)
and σ(x) =

1
cosh(τ x)

Let ∆ti,j = Var(ξi,j). Let ti,j be given by ti,0 = t0 and ti,j+1 = ti,j + ∆ti,j . Let
stochastic processes Xi recursively be defined by:

Xi(t0) = x0, ∆Xi(ti,j) = a(Xi(ti,j)) ∆ti,j + σ(Xi(ti,j)) ξi,j

and
Xi(ti,j+1) = Xi(ti,j) + ∆Xi(ti,j).

Then (Xi(T))i∈N S-converges approximately to a random variable X∞ that fulfills
X∞ = 1

τ arsinh(τ Z) for an N
(
e−(T−t0)y0,

1
2 (1− e−2(T−t0))

)
distributed random vari-

able Z with y0 = 1
τ sinh(τ x0).

Proof: Note that the hypotheses of Remark 5.5 are fulfilled. Thus by Remark 5.5 Xi(T)
S-converges approximately to a random variable X∞ . Let sinhτ (x) := 1

τ sinh(τ x).
We conclude from Remark 5.5 (or Theorem 5.4) with f = g ◦ sinhτ , Proposition 6.2,
Remark 6.3 and Corollary 6.5 that

(∀stg ∈ C∞0 )

E[g ◦ sinhτ ◦X∞] ≈ ug◦sinhτ (t0, x0) =

vg
(

t0,
1
τ

sinh(τ x0)
)

= vg(t0, y0) ≈ E[g ◦ Z̃]


with Z̃ an N

(
e−(T−t)y0,

1
2 (1− e−2(T−t))

)
distributed random variable and y0 = 1

τ sinh(τ x0).
Thus if we let Z := sinhτ ◦X∞ then

∀stg ∈ C∞0 E[g ◦ Z] = E[g ◦ sinhτ ◦X∞] ≈ E[g ◦ Z̃]

and thus Z is also N
(
e−(T−t)y0,

1
2 (1− e−2(T−t))

)
distributed. 2
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A Appendix

Definition A.1 Given a function g : Ω→ R we let g(n) := g · 1I{x|−n≤g(x)≤n} .

We show that the infinitesimal Lindeberg condition displayed by equation (12) of this
article is equivalent with the near Lindeberg condition given by equation (14.1) of [27].
For this purpose we display the near Lindeberg condition (14.1) of [27]:

A family of random variables (δWt)t∈[ t0...T ) fulfills the near Lindeberg condition if

(61) ∀stε > 0 E

 ∑
t∈[ t0...T )

(δWt)2

 ≈ E

 ∑
t∈[ t0...T )

(δWt
(ε))2

 .
Lemma A.2 Suppose that we are given a family of real valued random variables
(δWt)t∈[ t0...T ) with distributions νt . Then the infinitesimal Lindeberg condition (12)
and the near Lindeberg condition (61) are equivalent.

Proof: We show (61) ⇒ (12) first. Formula (61) is, by the linearity of the expectation
and the fact that

(62) (δWt)2 ≥ (δWt
(ε))2,

equivalent with

∀stε > 0
∑

t∈[ t0...T )

E
[
(δWt)2 − (δWt

(ε))2] < ε.

This implies by Proposition 2.3 that

(63) ∃η ≈ 0
∑

t∈[ t0...T )

E
[
(δWt)2 − (δWt

(η))2] < η.

Formula (63) is equivalent with our infinitesimal Lindeberg condition (12). Thus (61)
⇒ (12) has been proved and it remains to be shown that (12) implies (61).

Formula (12) is equivalent with (63). Since η ≤ ε implies that∑
t∈[ t0...T )

E
[
(δWt)2 − (δWt

(ε))2] ≤ ∑
t∈[ t0...T )

E
[
(δWt)2 − (δWt

(η))2] ,
we obtain from (63) and (62) that

(64) ∀stε > 0
∑

t∈[ t0...T )

E
[
(δWt)2 − (δWt

(ε))2] ≈ 0.
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Formula (64) implies by the linearity of the expectation that (61) holds. Thus (12) ⇒
(61) has been established and the lemma has been proved. 2

There exists a further condition (65) that - although seemingly weaker than (61) - turns
out to be equivalent with (61). To state this condition we need the following definition:

Definition A.3 Given a function g : Ω→ R we let g|n:= max(min(g, n),−n).

Lemma A.4 Suppose that we are given a family of real valued random variables
(δWt)t∈[ t0...T ) with distributions νt . Then the equivalent conditions (12) and (61) are
further equivalent with

(65) ∀stε > 0 E

 ∑
t∈[ t0...T )

(δWt)2

 ≈ E

 ∑
t∈[ t0...T )

(δWt|ε)2

 .
Proof: We show (61) ⇒ (65) ⇒ (12). Since∑

t∈[ t0...T )

(δWt)2 ≥
∑

t∈[ t0...T )

(δWt|ε)2 ≥
∑

t∈[ t0...T )

(δWt
(ε))2,

we obtain that (61)⇒ (65) holds and it remains to be show that (65)⇒ (12). Formula
(65) is, by the linearity of the expectation and the fact that

(δWt)2 ≥ (δWt|ε)2,

equivalent with

∀stε > 0
∑

t∈[ t0...T )

E
[
(δWt)2 − (δWt|ε)2] < ε.

This implies by Proposition 2.3 that

(66) ∃η̂ ≈ 0
∑

t∈[ t0...T )

E
[
(δWt)2 − (δWt|η̂)2] < η̂.

Formula (66) is equivalent with

(67) ∃η̂ ≈ 0
∑

t∈[ t0...T )

[∫
|y|≥η̂

(y2 − η̂2) dνt(y)

]
< η̂.

Formula (67) implies that

(68) ∃η̂ ≈ 0
∑

t∈[ t0...T )

[∫
|y|≥2η̂

η̂2 dνt(y)

]
<

∑
t∈[ t0...T )

[∫
|y|≥2η̂

(y2 − η̂2) dνt(y)

]
< η̂.
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From (68) we obtain that

∃η̂ ≈ 0
∑

t∈[ t0...T )

[∫
|y|≥2η̂

y2 dνt(y)

]
=

∑
t∈[ t0...T )

[∫
|y|≥2η̂

(y2 − η̂2) dνt(y)

]
+

∑
t∈[ t0...T )

[∫
|y|≥2η̂

η̂2 dνt(y)

]
< 2η̂.

(69)

Letting η = 2η̂ we finally obtain (12) from (69). Thus (65) ⇒ (12) has been proved.
2
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