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Lp(Lq)-Banach lattices
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Abstract: We introduce the class of doubly atomless bands in Lp(Lq)-Banach
lattices and show that this class is axiomatizable by positive bounded sentences
in the language of Banach lattices. (Here p 6= q are fixed and in the interval
1 ≤ p, q < ∞ .) The theory of this class is complete (indeed, we show it is
separably categorical) and model complete. Further, we show that it satisfies
quantifier elimination if and only if the ratio p/q is not an integer. On the functional
analytic side, the proof of the latter result uses a positive-coefficient version of the
well known Rudin-Plotkin-Hardin extension theorems.
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Introduction

This paper is a continuation of our paper [HR] in which we began the study of the class
of Lp(Lq)-Banach lattices from a model theoretic point of view. (Throughout this paper
we assume 1 ≤ p, q < ∞ and p 6= q.) The logical framework we use for this study
is the setting of positive bounded formulas and approximate satisfaction initiated by
Henson in [He] and developed by Henson and Iovino in [HI]. In order to have a class
that is axiomatizable in this framework one needs to expand the class of Lp(Lq)-spaces
(since, for example, this class is not closed under ultraproducts). In [HR] we considered
the class BLpLq of bands of Lp(Lq)-Banach lattices, which turns out to be natural in
both functional analysis and model theory.

One of the main results of [HR] shows that the class of BLpLq -Banach lattices is
axiomatizable by positive bounded sentences in the language of Banach lattices. (See
[HR, Corollary 2.10].) An explicit set of axioms for this class can be derived from
the results in Section 3 of [HR], which show that a Banach lattice is in the class
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2 C W Henson and Y Raynaud

exactly when it can be paved in an almost isometric sense by finite dimensional
BLpLq -sublattices. (See [HR, Proposition 3.6]; to express the needed axioms as positive
bounded sentences one needs bounds on the dimensions of the BLpLq -sublattices as
given in [HR, Proposition 3.7].)

In this paper we identify and study a natural axiomatizable subclass of BLpLq whose
theory is very well behaved from the model theoretic point of view. This is the class of
doubly atomless BLpLq -Banach lattices; see the beginning of Section 2 for the definition.
Every member of this class turns out to be elementarily equivalent to the Banach lattice
Lp([0, 1]; Lq([0, 1])), which we denote by Lp(Lq); hence the theory of the class of
doubly atomless BLpLq -Banach lattices is complete. Indeed, every separable member
of this class is isomorphic to Lp(Lq) (i.e., this theory is in fact separably categorical).

The main focus of this paper is to determine the values of p, q for which the theory of
doubly atomless BLpLq -Banach lattices has quantifier elimination. (See [HI, Definition
13.13] and the material that follows it for a discussion of quantifier elimination in
the positive bounded setting.) When 1 ≤ p 6= q < ∞, we show that this theory has
quantifier elimination if and only if the ratio α := p/q is not an integer. (See Corollary
4.4 and Proposition 5.4.)

In Section 6 we indicate (without full details) that the theory of doubly atomless
BLpLq -Banach lattices is model complete for all values of p, q, and indeed that it is the
model companion of the theory of all BLpLq -Banach lattices.

In the background of this investigation are corresponding results for Lp -spaces that
were already known. (For this reason we are excluding the case p = q in this paper.)
As shown in [HI, Example 13.4], the class of Lp -Banach lattices is axiomatizable
by positive bounded sentences. Further, the class of atomless Lp -Banach lattices is
axiomatizable and its theory is complete, separably categorical, and has quantifier
elimination for all 1 ≤ p <∞. (See Henson’s [He, Theorem 2.2] for axiomatizability
of the atomless condition and for completeness of the theory, and [HI, Example 13.18]
for quantifier elimination.)

In certain ways, the model theoretic study of BLpLq -Banach lattices has more features in
common with the model theory of Lp -Banach spaces than it does with the model theory
of Lp -Banach lattices. As noted in the previous paragraph, for atomless Lp -Banach
lattices one has quantifier elimination for all values of p. In that result there is nothing
like the restriction (that p/q not be an integer) needed for atomless BLpLq -Banach
lattices to have quantifier elimination. However, when Lp -spaces are considered without
the lattice structure, a similar complexity arises. In [HI, Example 13.8] it is discussed
that the full class of Lp -Banach spaces as well as the class of atomless Lp -spaces are
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both axiomatized by positive bounded sentences in the pure language of Banach spaces.
As in the lattice case, and for the same reasons, the theory of atomless Lp -Banach spaces
is complete and separably categorical. However, this theory has quantifier elimination if
and only if p 6= 4, 6, 8, . . . , as is discussed in [HI, Example 13.18 at the end]. Further,
the reasoning behind that result is similar to what we use in Sections 3, 4, and 5 of this
paper to treat quantifier elimination for the theory of doubly atomless BLpLq -Banach
lattices. Finally, we note that it can be shown for all values of 1 ≤ p < ∞ that the
theory of atomless Lp -Banach spaces is the model companion of the theory of all
Lp -Banach spaces, using the same argument we use in Section 6 to prove the analogous
result for doubly atomless BLpLq -Banach lattices.

We close this Introduction by indicating the contents of this paper section by section.
Section 1 contains preliminaries from analysis needed for the spaces we consider here.
Section 2 defines the class of doubly atomless BLpLq -spaces and proves that it is
axiomatizable, and that its theory is separably categorical and complete. Here we also
show that the classes of BLpLq -spaces we study are closed under unions of increasing
chains. Section 3 contains some results about extending isometries on the positive
cone of Lα topological vector lattices for 0 < α < ∞; these results are central to
our treatment of quantifier elimination for doubly atomless BLpLq -Banach lattices. In
Sections 4 and 5 we prove our quantifier elimination results. In Section 6 we briefly
discuss model completeness for the theory of doubly atomless BLpLq -Banach lattices.
At the end of the paper we indicate some possible directions for further research in this
area.

Research of the first author was partially supported by NSF grant DMS-0555904.

1 Preliminaries

Lp(Lq)-spaces

If 1 ≤ p <∞, Y is a Banach space, and (Ω,Σ, µ) is a measure space, then Lp(Ω,Σ, µ; Y)
is the space of (classes of) Bochner-measurable functions f : Ω→ Y such that (the class
of) the function NY(f ) : Ω → R+ defined by ω 7→ ‖f (ω)‖Y belongs to Lp(Ω,Σ, µ).
(Recall that Bochner-measurable functions are limits of sequences of measurable simple
functions.) In this definition “class” means as usual “equivalence class with respect
to equality almost everywhere”. If Y itself is a space of the form Lq(Ω′,Σ′, µ′),
1 ≤ q < ∞, then Lp(Ω,Σ, µ; Y) can be identified with a Banach lattice X of scalar-
valued measurable functions on the product measure space (Ω × Ω′,Σ⊗̄Σ′, µ⊗̄µ′).
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4 C W Henson and Y Raynaud

The definition of this product measure space is standard when µ, µ′ are both σ -finite.
In that case the class of a µ⊗̄µ′ -measurable function f belongs to X iff the (classes
of the) partial functions f (ω, ·) (which are ν -measurable for µ-almost every ω ∈ Ω)
belong to Lq(Ω′,Σ′, ν ′) for µ-almost every ω ∈ Ω and the (class of the) function
Nq(f ) : Ω → R+ , defined by ω 7→ (

∫
|f̃ (ω, ω′)|q dµ′(ω′))1/q , belongs to Lp(Ω,Σ, µ).

When considering ultraproducts of such spaces, it is necessary to consider also the
case of non σ -finite measure spaces. In fact we may restrict to decomposable measure
spaces: a measure space (Ω,Σ, µ) is decomposable (or strictly localizable) if there
exists a partition Ω =

⋃
α Ωα of Ω into elements Ωα of Σ that have finite nonzero

µ-measure, such that

(i) a subset A of Ω belongs to Σ if and only if each Ωα ∩ A belongs to Σ; and

(ii) in that case one also has µ(A) =
∑
α
µ(A ∩ Ωα).

Every Lp -space (1 ≤ p <∞) can be represented as the Lp -space of a decomposable
measure space.

Such a measure space (Ω,Σ, µ) is in particular Maharam; that is, it is semi-finite (i.e.,
every set A ∈ Σ with µ(A) > 0 contains a subset B ∈ Σ with 0 < µ(B) < ∞) and
the space L∞(Ω,Σ, µ) is order-complete (i.e., every order bounded family of elements
has a least upper bound; equivalently, L0(Ω,Σ, µ) is order-complete). Consequently,
the dual of L1(Ω,Σ, µ) is identifiable with L∞(Ω,Σ, µ) via the pairing given by the
integral. The product of two decomposable measure spaces can be defined in such
a way to also be decomposable, and the interpretation of Lp(Ω,Σ, µ; Lq(Ω′,Σ′, µ′))
as a space of measurable functions on the product measure space is very similar
to the σ -finite case. (The condition for a µ ⊗ µ′ -measurable function to define an
element of Lp(Ω,Σ, µ; Lq(Ω′,Σ′, µ′)) is the same as in the σ -finite case provided the
function is supported by a product of σ -finite sets, and conversely, every element of
Lp(Ω,Σ, µ; Lq(Ω′,Σ′, µ′)) has such a representing measurable function.)

Abstract Lp(Lq)-spaces

A description of ultraproducts of Lp(Lq)-Banach lattices has been known since the
1980s. This class is not closed under ultraproducts, but a somewhat larger class is,
namely the class of bands of Lp(Lq)-Banach lattices ([LR1], [HLR]). A band in
Lp(Ω,Σ, µ; Lq(Ω′,Σ′, µ′)) is the range RS of a projection f 7→ 1S.f , where S ⊂ Ω× Ω′

is some µ⊗µ′ -measurable subset. Equivalently RS consists of all S-supported elements
of Lp(Lq) and S is called the support of RS . Let us recall a definition of bands in a
general Banach lattice, relying only on the Banach lattice structure: a band in a Banach
lattice X is a subset of the form A⊥ , where A ⊂ X and A⊥ = {g ∈ X | ∀f ∈ X, f ⊥ g}
is the set of the elements of X that are disjoint from all elements in A.
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An “abstract” description of these bands as Banach lattices has been given. By
an abstract Lp(Lq)-space (in short, an ALpLq -space) we mean a Banach lattice X
which, for some measure space (Ω,Σ, µ), can be equipped with the structure of an
L∞(Ω,Σ, µ)-module and with a map N : X → Lp(Ω,Σ, µ)+ such that

(i) For every ϕ ∈ L∞(Ω,Σ, µ) and x ∈ X , if ϕ ≥ 0 and x ≥ 0, then ϕ.x ≥ 0;

(ii) N(x + y) ≤ N(x) + N(y) for every x, y ∈ X ;

(iii) N(ϕ.x) = |ϕ|N(x) for every ϕ ∈ L∞(Ω,Σ, µ) and x ∈ X ;

(iv) if 0 ≤ |x| ≤ |y|, then N(x) ≤ N(y), for every x, y ∈ X ;

(v) N(x + y)q = N(x)q + N(y)q for every pair of disjoint x, y ∈ X ;

(vi) ‖x‖X = ‖N(x)‖Lp for every x ∈ X .

A map N satisfying the axioms (ii)–(vi) is called a q-random norm. The ordinary
Bochner spaces Lp(Lq) are clearly ALpLq -spaces (the random norm of which was
denoted by Nq in the previous paragraph); in particular, Lp -spaces and Lq -spaces are
ALpLq -spaces. More generally, any band B in a Bochner Lp(Ω,Σ, µ; Lq)-space inherits
the structure of an ALpLq -space. Conversely, it was proved in [LR1] (see also [LR2]
and [HLR]) that every ALpLq -space is isomorphic to a band of a Bochner Lp(Lq)-space.
In fact the isomorphism preserves the action of L∞ and the q-random norm. This
provides a characterization of bands in Lp(Lq)-spaces as the Banach lattices arising
from ALpLq -spaces by ignoring the action of L∞ and the random norm N . Such spaces
were called BLpLq -Banach lattices in [HR]. It was proved in [HR] that the class of
BLpLq -Banach lattices is axiomatizable in the signature of Banach lattices.

Note that the class of ALpLq -spaces is closed under ⊕p (p-direct sum). In the separable
case, every ALpLq -space X has a concrete representation as a p-direct sum of Bochner
Lp(Lq)-spaces; namely, X is isomorphic to a Banach lattice of the form(⊕

n≥0

Lp(Ωn; `n
q)
)

p
⊕
p

Lp(Ω∞; `q)⊕
p(⊕

n≥0

Lp(Ω′n; Lq([0, 1])⊕
q
`n

q)
)

p
⊕
p

Lp(Ω′∞; Lq([0, 1])⊕
q
`q).

It was noted in [LR1] that (for fixed p, q) the class of ALpLq -spaces is closed under
ultraproducts. Let U be an ultrafilter on the set I , (Xi)i∈I a family of ALpLq -spaces, and
Ni : Xi 7→ Lp(Ωi,Σi, µi)+ the corresponding q-random norms. Let L be the abstract
Lp -space

∏
U Lp(Ωi,Σi, µi). If Lp(Ω̃, Σ̃, µ̃) is any representation of L as an Lp -space

over a decomposable measure space, then
∏
U L∞(Ωi,Σi, µi) may be identified with

Journal of Logic & Analysis 3:11 (2011)



6 C W Henson and Y Raynaud

a subalgebra Z of L∞(Ω̃, Σ̃, µ̃) acting naturally on
∏
U Xi by the ultraproduct action,

which extends in a unique way to an action of L∞(Ω̃, Σ̃, µ̃) on
∏
U Xi . Then the

ultraproduct map NU :
∏
U Xi →

∏
U Lp(Ωi,Σi, µi) defines a q-random norm on the

Banach lattice
∏
U Xi , with respect to this action of L∞(Ω̃, Σ̃, µ̃).

Isomorphisms and embeddings

We specialize some terminology from [HI] to the setting of the structures considered
here. Given two Banach lattices X and Y , a map T : X → Y that is linear, isometric and
preserves the lattice operations will simply be called an embedding. If an embedding T
is surjective, it will be called an isomorphism.

In a few places we consider certain Banach lattices only as ordered Banach spaces,
and consider maps that are only linear, positive and isometric. We shall not give any
particular name to such maps (to speak of ordered normed space embeddings would be
appropriate, but needlessly pedantic).

For some purposes we consider convex cones in Banach spaces (e.g., positive cones of
Banach lattices). It is always understood that the vertex of such a cone is at the origin.
Let Γ1 and Γ2 be two such cones and T : Γ1 → Γ2 be a map. We call T a normed
cone morphism if it is affine (equivalently, additive and positively homogeneous of
degree one) and norm-preserving. Observe that this does not necessarily imply that T
is distance-preserving (e.g., consider the map T : L+

1 → R+ defined by T(f ) = ‖f‖1

for all f ).

Terminology

We use standard notation and terminology from functional analysis; for Banach lattice
notions see [LT] [MN] [Sch]. In particular, when we refer to a sublattice of a lattice
ordered vector space, we mean it to be a linear sublattice.

2 The class of doubly atomless BLpLq-Banach lattices

Let 1 ≤ p 6= q < ∞ and X be a ALpLq -Banach lattice, and N : X → Lp(Ω,A, µ)
a q-random norm on X . We say that two elements u, v ∈ X are base-disjoint if
N(x) ∧ N(y) = 0.

Let a ∈ X be a non-zero element. We say that a is a base-atom if every decomposition
of a as a sum of base-disjoint vectors is trivial, i.e., one of the vectors is zero. We say
that a is a fiber-atom if in every decomposition of a as a sum of disjoint vectors, the
vectors are in fact base-disjoint.
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We say that X is base-atomless (resp. fiber-atomless) if there is no base-atom (resp.
fiber-atom) in X ; and that X is doubly atomless if it is both base-atomless and
fiber-atomless.

The following Lemma shows that these concepts depend only on the Banach lattice
structure of X (not on the random norm); therefore we may speak of base-atomless,
fiber-atomless or doubly atomless BLpLq -Banach lattices.

2.1 Lemma 1) a is a base-atom in X iff for all u, v ∈ X one has(
a = u + v, |u| ∧ |v| = 0 and ‖u‖p + ‖v‖p = ‖u + v‖p

)
implies

(
u = 0 or v = 0

)
;

2) a is a fiber-atom in X iff for all u, v ∈ X one has(
a = u + v and |u| ∧ |v| = 0

)
implies ‖u‖p + ‖v‖p = ‖u + v‖p].

Proof It suffices to prove that two disjoint vectors u, v ∈ X are base-disjoint iff
‖u‖p +‖v‖p = ‖u+v‖p . This condition is clearly necessary; conversely, if it is satisfied,
then ∫

(N(u)p + N(v)p) =

∫
(N(u)q + N(v)q)p/q

but we have (N(u)p + N(v)p)− (N(u)q + N(v)q)p/q ≥ 0 if p ≤ q, resp. ≤ 0 if p ≥ q.
Hence the equality of integrals implies

N(u)p + N(v)p = (N(u)q + N(v)q)p/q

which in turn implies that N(u) and N(v) are disjoint since p 6= q.

2.2 Lemma Consider X as a band in a space Lp(Ω,A, µ; Lq(Ω′,A′, µ′)). Let SX be the
support of this band (considered as a measurable subset of Ω×Ω′ ). Let RX = ΩX ×Ω′X
be the smallest rectangle containing SX . Then X is base-atomless iff the measure
space (ΩX,A |ΩX , µ|ΩX ) is atomless; and X is fiber-atomless iff the measure space
(Ω′X,A′ |Ω′X , µ

′|Ω′X ) is atomless.

Proof i) It is clear that if the measure space (ΩX,A|ΩX , µ|ΩX ) is atomless, then X is
base-atomless. Conversely, let X be base-atomless and A be a σ -finite set in A that
is contained in ΩX . Then there exists an element x ∈ X with Ω-support A (that is,
Supp(N(x)) = A). If x = u + v is a nontrivial decomposition of x with disjoint random
norms N(u),N(v), then the supports Au,Av of N(u),N(v) are disjoint, have positive
measure and A = Au ∪ Av , so A is not an atom.

ii) Assume that the measure space (Ω′X,A′|Ω′X , µ
′|Ω′X ) is atomless, and let x ∈ X . We

want to find a disjoint decomposition x = u + v with N(u) ∧ N(v) 6= 0. Note that it
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8 C W Henson and Y Raynaud

is sufficient to do that for some non zero component of x. (Recall that a component
of x is an element u ∈ X such that x − u is disjoint from u; equivalently u = Px
for some band projection P in X ). So we may assume that x belongs to L∞ and
that the support of x is included in a rectangle Ax × A′x , where Ax (resp. A′x ) is a
subset of positive finite µ-measure (resp. µ′ -measure) included in ΩX (resp. Ω′X ).
If for some decomposition A′x = A′1 ∪ A′2 of A′x into two disjoint sets of positive
measure the vectors u = 1Ax×A′1

x and v = 1Ax×A′2
x are not base-disjoint, we are done.

Otherwise, for every integer N ≥ 1 we can find partitions A′x = A′1 ∪ ... ∪ A′N and
Ax = A1 ∪ ... ∪ AN with µ′(A′i) = 1/N , i = 1, ...n, such that x =

∑N
i=1 1Ai×A′i x . Then

‖x‖p =
∑N

i=1 ‖1Ai×A′i x‖
p ≤ ‖x‖p

∞
∑N

i=1 µ(Ai)N−p/q = ‖x‖∞µ(Ax)N−p/q → 0 when
N →∞, which is a contradiction.

Conversely, assume that the measure space (Ω′X,A′|Ω′X , µ
′|Ω′X ) has an atom A′ , which

necessarily has finite measure. Then for some A ∈ A, the function x = 1A×A′ is an
element of X . Consider a decomposition x = u + v as the sum of two disjoint nonzero
elements u, v; then u = 1U , v = 1V , where U,V form a measurable partition of A×A′ .
Since A′ is an atom we necessarily have U = B× A′ and V = C × A′ , where (B,C) is
a measurable partition of A. Hence u, v are base-disjoint, and x is a fiber-atom.

2.3 Lemma a) X is base-atomless iff for every x ∈ X there exist two disjoint elements
u, v ∈ X with x = u + v and ‖u‖ = ‖v‖ = 2−1/p‖x‖.
b) X is fiber-atomless iff for every x ∈ X there exist two disjoint elements u, v ∈ X
with x = u + v and ‖u‖ = ‖v‖ = 2−1/q‖x‖.

Proof a) Consider an x in X . If such a decomposition exists for x, then the two
components of x are clearly base-disjoint (by the proof of Lemma 2.1), so x is not a base-
atom; hence the condition is sufficient. Conversely, if X is base-atomless, then it can
be represented as a band in some space Lp(Ω,A, µ; Lq(Ω′,A′, µ′)), where the measure
space (Ω,A, µ) is atomless. Then for every x ∈ X there exist disjoint sets A,B ∈ A
such that A ∪ B is the support of N(x) and ‖1AN(x)‖p = ‖1BN(x)‖p = 2−1/p‖N(x)‖p .
Then set u = 1Ax and v = 1Bx .

b) A disjoint decomposition x = u + v with ‖u‖ = ‖v‖ = 2−1/q‖x‖ cannot be
base-disjoint (unless x = 0); hence, if such a decomposition exists for every x ∈ X ,
then X is fiber-atomless.

Conversely, assume that X is fiber-atomless, and represent it as a band in in some space
Lp(Ω,A, µ; Lq(Ω′,A′, µ′)), where the measure space (Ω′,A′, µ′) is atomless. Let x ∈ X
be a non-zero element. Then there exists a component x1 of x such that x1 6= 0 and
N(x1) ≤ 2−1/qN(x). For, by hypothesis there is a disjoint decomposition x = u + v with
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N(u) ∧ N(v) 6= 0; since N(u)q + N(v)q = N(x)q we have N(u)q ∧ N(v)q ≤ (1/2)N(x)q .
Denoting the support of (N(u)−N(v))+ by A, we set x1 = 1Acu+1Av. Then x1 is a non-
zero component of x and N(x1) = N(u) ∧ N(v) ≤ 2−1/qN(x). Iterating this procedure
we may find for every k a component xk of x with xk 6= 0 and N(xk) ≤ 2−k/qN(x).

The set Cx of components of x can be ordered by the relation u ≺ v iff |u| ≤ |v|
(equivalently, the support of u is included in that of v). Then every linearly ordered
family Γ of elements of Cx has a least upper bound uΓ , which is still an element of Cx .
Thus by Zorn’s Lemma the set {u ∈ Cx | N(u) ≤ 2−1/qN(x)} (which is non empty by
the preceding discussion) has maximal elements. Let u0 be such a maximal element.
If N(u0) 6= 2−1/qN(x), there is some positive real ε and some measurable subset A of
the support of N(x) such that 1AN(u0) ≤ (2−1/q − ε)N(x). Let w0 = 1A(x− u0); we
can find a component w1 of w0 such that N(w1) ≤ εN(w0), hence N(w1) ≤ ε1AN(x).
Then u1 = u0 + w1 is a component of x such that N(u1) ≤ 2−1/qN(x), u0 ≺ u1

and u0 6= u1 , which contradicts the maximality of u0 . Hence N(u0) = 2−1/qN(x);
consequently if we set v0 = x − u0 , we have also N(w0) = 2−1/qN(x), and thus
‖u0‖ = ‖v0‖ = 2−1/q‖x‖.

2.4 Remark It results easily from the proof of part (b) of Lemma 2.3 that if X is a
fiber atomless ALpLq -Banach lattice, equipped with a q-random norm N with values
in Lp(Ω,A, µ), then for every element x ∈ X and every ϕ ∈ L∞(Ω,A, µ) such that
0 ≤ ϕ ≤ 1 there exists a disjoint decomposition x = u + v in two components such
that N(u)q = ϕ.N(x)q , N(v)q = (1− ϕ).N(x)q .

2.5 Proposition The classes of base-atomless, resp. fiber-atomless, resp. doubly
atomless BLpLq -Banach lattices are axiomatizable (in the signature of Banach lattices).

Proof By [HR] the class of BLpLq -Banach lattices is axiomatizable. Thus we need only
to give positive bounded sentences in the language of Banach lattices, the approximate
satisfaction of which is equivalent, in BLpLq -Banach lattices, to the property of being
base-atomless, resp. fiber-atomless. From Lemma 2.3 we know that these properties are
respectively characterized by the following statements (expressed in the usual formal
language of mathematics):

(A) ∀x ∃u
[
‖|u| ∧ |x− u|‖ = 0 and ‖u‖ = 2−1/p‖x‖ and ‖x− u‖ = 2−1/p‖x‖

]
respectively

(B) ∀x ∃u
[
‖|u| ∧ |x− u|‖ = 0 and ‖u‖ = 2−1/q‖x‖ and ‖x− v‖ = 2−1/q‖x‖

]
.
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10 C W Henson and Y Raynaud

Now consider for each real ε ≥ 0 the following sentences (which are positive bounded
sentences in the language of Banach lattices):

∀1x ∃1u
[
‖|u| ∧ |x− u|‖ ≤ ε and |‖u‖−2−1/p‖x‖| ≤ ε

and |‖x− u‖ − 2−1/p‖x‖| ≤ ε
](Aε)

and

∀1x ∃1u
[
‖|u| ∧ |x− u|‖ ≤ ε and |‖u‖−2−1/q‖x‖| ≤ ε

and |‖x− v‖ − 2−1/q‖x‖| ≤ ε
](Bε)

(Recall that in the bounded quantifiers ∀1x and ∃1x the variable x is taken to range over
all elements of norm ≤ 1.)

It is easy to see that in all Banach lattices, (A0 ) and (B0 ) are equivalent to (A) and
(B), respectively. Likewise, simple homogeneity and continuity arguments show that a
Banach lattice satisfies all the (Aε ), resp. (Bε ), ε > 0, if and only if it approximately
satisfies (in the sense of [HI]) the positive bounded sentence (A0 ), resp. (B0 ).

We will show that for ε sufficiently small, a BLpLq -Banach lattice X that satisfies
(Aε ), resp. (Bε ) is in fact base-atomless, resp. fiber-atomless; that is, it verifies (A0 ),
resp. (B0 ). It follows that for any Banach lattice X in the class BLpLq , approximate
satisfaction of (A0 ), resp. (B0 ) by X is equivalent to X being base-atomless, resp.
fiber-atomless.

First we prove this claim for the sentences (Aε ) and the property of being base-
atomless. Assume that X is a BLpLq -Banach lattice satisfying (Aε ), but that X contains
some non-zero base-atom a. Let u, v ∈ X with a = u + v, ‖|u| ∧ |v|‖ ≤ ε, and
|‖u‖ − 2−1/p‖a‖| ≤ ε, |‖v‖ − 2−1/p‖a‖| ≤ ε. We can find disjoint elements u′, v′

in X such that ‖u − u′‖ ≤ ε and ‖v − v′‖ ≤ ε (e.g., u′ = u − u+ ∧ |v| + u− ∧ |v|,
v′ = v− v+ ∧ |u|+ v− ∧ |u|). We have then:

‖a− (u′ + v′)‖ ≤ 2ε, |‖u′‖ − 2−1/p‖a‖| ≤ 2ε, and |‖v′‖ − 2−1/p‖a‖| ≤ 2ε

Let Pu′ and Pv′ be the projections in X onto the bands generated respectively by u′ and
v′ , and set:

b = Pu′a, c = Pv′a

We have:

‖b− u′‖ = ‖Pu′(a− (u′ + v′))‖ ≤ ‖a− (u′ + v′)‖ ≤ 2ε and similarly ‖c− v′‖ ≤ 2ε

Note that P = Pu′ + Pv′ is also a band projection, and P(u′ + v′) = u′ + v′ . Thus

‖a− (b + c)‖ = ‖(I − P)a‖ = ‖(I − P)(a− (u′ + v′))‖ ≤ ‖a− (u′ + v′)‖ ≤ 2ε
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and consequently:

(*) ‖a− (b + c)‖ ≤ 2ε, |‖b‖ − 2−1/p‖a‖| ≤ 4ε, and |‖c‖ − 2−1/p‖a‖| ≤ 4ε.

Observe that since b, c are both components of the base-atom a, their random norms
N(b) and N(c) must be proportional to each other, and thus proportional to ‖b‖ and
‖c‖. Since b and c are disjoint we have N(b + c) = (N(b)q + N(c)q)1/q , and thus:

(**) ‖b + c‖ = (‖b‖q + ‖c‖q)1/q

From (*) we obtain:

|‖a‖ − ‖b + c‖| ≤ 2ε and |(‖b‖q + ‖c‖q)1/q − 2−1/p+1/q‖a‖| ≤ 8ε

Therefore conditions (*) are not compatible with (**) if |1− 2−1/p+1/q| > 10ε.

Finally, we we prove our claim for the sentences (Bε ) and the property of being
base-atomless. Assume now that X is a BLpLq -Banach lattice satisfying (Bε ), but that
X contains some non-zero fiber-atom a. Let u, v ∈ X with a = u + v, ‖|u| ∧ |v|‖ ≤ ε,
and |‖u‖ − 2−1/q‖a‖| ≤ ε, |‖v‖ − 2−1/q‖a‖| ≤ ε. Consider, as in the preceding
paragraph, disjoint elements u′, v′ in X such that ‖u− u′‖ ≤ ε and ‖v− v′‖ ≤ ε, and
set b = Pu′a and c = Pv′a. We obtain now:

(†) ‖a− (b + c)‖ ≤ 2ε, |‖b‖ − 2−1/q‖a‖| ≤ 4ε, and |‖c‖ − 2−1/q‖a‖| ≤ 4ε

Since the elements b and c are two components of the same fiber-atom a, they must be
base-disjoint. Thus

(††) ‖b + c‖ = (‖b‖p + ‖c‖p)1/p

Conditions (†) and (††) are incompatible if |1− 2−1/q+1/p| > 10ε.

2.6 Proposition Every separable doubly atomless BLpLq -Banach space is isomorphic
to Lp([0, 1]; Lq([0, 1]) (which we denote by Lp(Lq)). Hence the theory of doubly
atomless BLpLq -Banach lattices is separably categorical (i.e., it has only one separable
model up to isomorphism).

Proof Let X be a separable doubly atomless BLpLq -Banach lattice. It can be rep-
resented as a band in a space Lp(Ω1,A1, µ1; Lq(Ω2,A2, µ2)), where (Ω1,A1, µ1) and
(Ω2,A2, µ2) are atomless measure spaces. Moreover one may assume that the least
rectangle containing the support of this band is Ω1 × Ω2 .

First we will show that the spaces L1(Ω1,A1, µ1) and L1(Ω2,A2, µ2) are both separable.
Indeed, each of these L1 -spaces is isomorphic to a direct sum of spaces of the form
L1([0, 1]κ), where [0, 1] is equipped with Lebesgue measure and κ is some cardinal
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number. If for example L1(Ω2,A2, µ2) contains a component L1(B) ' L1([0, 1]κ) with
κ > ℵ0 , then since the support SX intersects Ω1 × B (i.e., the intersection has positive
measure) there is some component L1(A) ' L1([0, 1]α) of L1(Ω1,A1, µ1) such that SX

intersects A× B. That is, T : = SX ∩ (A× B) has positive measure. Since the measure
space [0, 1]α × [0, 1]κ = [0, 1]α+κ is homogeneous, L1(A × B) is isomorphic to its
band L1(T, (A1 ⊗A2)|T , (µ1 ⊗ µ2)|T ); hence this last space is not separable. Then the
band generated by T in X is not separable either (since the norm of X dominates the
L1 -norm up to a constant factor on the set T , which is of finite measure). So in fact
every component in the decomposition of both L1 -spaces is separable. On the other
hand both of the measure spaces are σ -finite: if for example (Ω2,A2, µ2) were not
σ -finite, then Ω2 would contain an uncountable family (Bγ) of disjoint measurable
sets of positive measure. Each of the bands generated by Ω1 × Bγ in X would in turn
contain a non-zero element xγ , and X would contain an uncountable family(xγ) of
pairwise disjoint, non zero elements and would not be separable, a contradiction. This
completes the proof that L1(Ω1,A1, µ1) and L1(Ω2,A2, µ2) are both separable.

Since both measure spaces (Ω1,A1, µ1) and (Ω2,A2, µ2) are also atomless, it follows
that the corresponding Lp -spaces are isomorphic to the usual Lebesgue spaces Lp([0, 1]).
Thus we may suppose that X is a band in Lp(Lq).

Let f0 ∈ X be a positive element of maximal support. We may suppose that N(f0) is an
indicator function; its support is then the base-support ΩX of X . Let w = |f0|q ; denoting
also by w a non-negative function measurable in the two variables representing w, set

W(s, t) =

∫ t

0
w(s, u) du.

Then W is a measurable function of the two variables (s, t), increasing and continuous
with respect to the second variable, and W(s, 1) = 1. The change of variable formula
for the Lebesgue integral [Ran, Corollary 6.3.17] yields that∫ 1

0
h(W(s, u)) w(s, u) du =

∫ 1

0
h(W(s, u)) dWs(u) =

∫ 1

0
h(t) dt

for every h ∈ L1([0, 1]). Let Y = Lp(ΩX; Lq([0, 1]). Then we define a linear map
T : L0(ΩX × [0, 1]) into L0([0, 1]2) by

Tf (s, t) = f (s,W(s, t)) f0(s, t)

Then clearly
N(Tf ) = N(f ).

In particular T defines an embedding from Y into Lp([0, 1]; Lq([0, 1])), in fact into the
band generated by f0 , which is X . Note that T preserves random norms and is modular
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for the action of L∞(ΩX), that is

T(φf ) = φf

for all f ∈ Y and φ ∈ L∞(ΩX). Let us show that T is surjective (from Y onto X ). If
0 ≤ a ≤ 1, Ea = {(s, u) ∈ [0, 1]2 | u ≤ W(s, a)} and Fa = ΩX × [0, a], we have

W−1(Ea) = {(s, t) | W(s, t) ≤ W(s, a)} ⊃ ΩX × [0, a] = Fa

thus
T1Ea = (1Ea ◦W)f0 ≥ 1Fa f0

On the other hand N(T1Ea) = N(1Ea) = W(·, a)1/q = N(1Fa f0) and thus ‖T1Ea‖ =

‖1Fa f0‖. Since the lattice norm on Lp(Lq) is strictly monotone, we have thus

T1Ea = 1Fa f0.

By modularity of T we have that 1A×Fa f0 belongs to the range of T for every measurable
subset A of ΩX and a ∈ [0, 1]. By linearity and density, the range of T (which is closed
since T is isometric) contains X . So T : Y → X is an isomorphism.

Finally we may find an isomorphism U from Lp(ΩX) onto Lp([0, 1]), e.g., mapping 1ΩX

onto |ΩX|1/p1[0,1] . Then U ⊗ I maps Y onto Lp([0, 1]; Lq([0, 1]) isometrically.

2.7 Corollary For any pair X1,X2 of doubly atomless BLpLq -Banach lattices there is
an ultrafilter U such that the corresponding ultrapowers (X1)U , (X2)U are isomorphic.

Proof By the Downward Löwenheim-Skolem Theorem (see [HI, Proposition 9.13])
every BLpLq -Banach lattice X contains a separable one X0 that is an elementary
substructure of X . In particular X and X0 are elementary equivalent. If X is doubly-
atomless, then by Proposition 2.5 so is X0 , which is thus isomorphic to Lp(Lq), by
Proposition 2.6. Hence all the doubly-atomless BLpLq -spaces are elementary equivalent
and the Ultrapower Theorem ([HI, Theorem 10.7]) shows that any two doubly atomless
BLpLq -Banach lattices have isomorphic ultrapowers.

2.8 Proposition The following classes of Banach lattices are closed under unions of
increasing chains:
i) the class of BLpLq -Banach lattices;
ii) the class of doubly atomless BLpLq -Banach lattices.

Proof i) Let (Xi)i∈I be an increasing chain of BLpLq -Banach lattices and X = ∪iXi

be the completion of their union. By [HR, Proposition 3.6], it suffices to check that
X is a (LpLq)1 -Banach lattice, that is: for every finite family x1, . . . , xn of disjoint
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14 C W Henson and Y Raynaud

elements of X and every ε > 0, there exists a finite dimensional sublattice F of X and
a vector lattice isomorphism T from F onto a finite-dimensional BLpLq -space such
that ‖T‖ ‖T−1‖ < 1 + ε and dist(xk,F) < ε, k = 1, . . . n.

In fact, decomposing xk , k = 1, . . . , n into their positive and negative parts, we may
reduce to the case where xk ≥ 0, k = 1, . . . , n. Then find i ∈ I and y1, . . . yn in
X+

i such that ‖xk − yk‖ ≤ ε′ := ε/(2n + 1), k = 1, . . . n. For j 6= k we have then
‖ |yj| ∧ |yk| ‖ ≤ 2ε′ by the triangle inequality. Setting zj =

(
yj −

∨
k 6=j yk

)
+

, we
obtain positive, disjoint elements z1, . . . zn ∈ Xi with ‖xj − zj‖ ≤ 2nε′ , j = 1, . . . n.
Since Xi is a (LpLq)1 -Banach lattice, it contains a finite-dimensional sublattice F
such that dist (zj,F) < ε′ , j = 1, . . . n and there is a vector lattice isomorphism
T from F onto a finite-dimensional BLpLq -space with ‖T‖ ‖T−1‖ < 1 + ε. Then
dist (xj,F) < (2n + 1)ε′ < ε, j = 1, . . . n. Since F ⊂ X we are done.

ii) We now have to prove that if, moreover, the BLpLq -Banach lattices in the chain are
doubly atomless, then so is X . This is a trivial consequence of the axiomatization of
both base- and fiber-atomless properties by means of a ∀∃ axiom (see the proof of
Proposition 2.5).

3 Continuation of positive isometries on subcones of L+
α

The following equimeasurability result on the positive axis is known (see [Li, Lemma
2]); for the sake of completeness we give a short proof, following [Ray].

3.1 Lemma Let α be a positive real number that is not an integer. Let µ, ν be two
probability measures on [0,+∞), each having a moment of order α . If∫ +∞

0
(t + a)α dµ(t) =

∫ +∞

0
(t + a)α dν(t) (1)

for every a ≥ 0, then µ = ν .

Proof Assume first 0 < α < 1. We make use of the formula

∀s > 0, sα = Cα

∫ +∞

0
(1− e−us)

du
uα+1 .
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Then by Fubini’s theorem∫ +∞

0
(t + a)α dµ(t) = Cα

∫ +∞

0

∫ +∞

0
(1− e−u(t+a))

du
uα+1 dµ(t) =

= Cα

∫ +∞

0

[
1−

∫ +∞

0
e−u(t+a) dµ(t)

]
du

uα+1

= Cα

∫ +∞

0

[
1− e−uaLµ(u)

] du
uα+1

where Lµ denotes the Laplace transform of µ. For all u > 0, set

Φµ(u) =
1− Lµ(u)

uα+1 .

Observe that Lµ(u) ≤ 1, hence Φµ(u) ≥ 0 for all u > 0. If we put a = 0 in the above
formula, we get

Cα

∫ +∞

0
Φµ(u) du =

∫ +∞

0
tα dµ(t) < +∞

so ∫ +∞

0
(t + a)α dµ(t) = Cα

∫ +∞

0

(
1− e−ua

uα+1 + e−uaΦµ(u)
)

du =

= aα + LΦµ(a)

Hence equation (1) implies that LΦµ = LΦν ; then by injectivity of the Laplace transform
[Ka, p. 63] we have Φµ = Φν , so Lµ = Lν , and thus µ = ν .

This proves the Lemma in the case 0 < α < 1. Now if α > 1, we may differentiate
both sides of equation (1) with respect to a and obtain

α

∫ +∞

0
(t + a)α−1 dµ(t) = α

∫ +∞

0
(t + a)α−1 dν(t)

which is exactly the result of replacing α by α−1 in equation (1). Iterating, we descend
to the exponent β = α− [α] (the fractional part of α) which satisfies 0 < β < 1 unless
α ∈ N, and we conclude the proof using the above reasoning.

3.2 Proposition Let (Ω,A,P) be a probability space and α > 0, α 6∈ N. Assume
that f1, . . . , fn, g1, . . . , gn are elements of the positive cone of Lα(Ω,A,P) satisfying

‖1 +

n∑
j=1

λjfj‖α = ‖1 +
n∑

j=1

λjgj‖α (2)

for every system (λ1, . . . , λn) of positive coefficients (1 denotes the constant unit
function). Then the random vectors (f1, . . . , fn) and (g1, . . . , gn) have the same joint
probability distribution.
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16 C W Henson and Y Raynaud

Proof From Lemma 3.1 we see that for any λ1, ..., λn ≥ 0

dist
( n∑

j=1

λjfj
)

= dist
( n∑

j=1

λjgj
)

Let νf , resp. νg be the probability distribution of the random vector f = (f1, .., fn), resp.
g = (g1, ..., gn). We have for every λ1, ...λn ∈ R+∫

Rn
+

exp
[
−

n∑
j=1

λjtj
]

dνf (t) =

∫
Rn

+

exp
[
−

n∑
j=1

λjt
]

dνg(t)

and therefore
Lνf = Lνg;

i.e., νf and νg have the same multivariate Laplace transform. By injectivity of
the multivariate Laplace transformation (e.g., see [Ka, Theorem 4.3]) it follows that
νf = νg .

3.3 Proposition Let 0 < α 6∈ N and Γ ⊆ L+
α (µ) be a subcone of the positive cone of

some Lα(µ)-space. Let T : Γ→ L+
α (ν) be a normed cone morphism into the positive

cone of another Lα -space. Then T extends uniquely to an isomorphism from the closed
sublattice generated by Γ onto the closed sublattice generated by T(Γ).

Proof The argument follows familiar lines (see Hardin’s [Ha, proof of Theorem 2.2]).
The uniqueness of this extension, if it exists, is clear. We show its existence.

a) We assume first that µ, ν are probability measures, Γ contains the positive constants,
and that T maps constants to constants (T1 = 1).

Then by Proposition 3.2 we have dist (Tf1, ..., Tfn) = dist (f1, ..., fn) for every f1, ..., fn ∈
Γ. In particular for all Borel subsets B1, . . . ,Bn of R we have µ({fi ∈ Bi, i = 1, ...n}) =

ν(Tfi ∈ Bi, i = 1, ..n). Set ρ({fi ∈ Bi, i = 1, ...n}) = {Tfi ∈ Bi, i = 1, ...n} for every
finite system (f1, ..., fn,B1, ...,Bn); this map is well defined up to sets of measure zero
and preserves measure. It extends first to a Boolean measure-preserving isomorphism
from the ring of measurable sets generated by the f ∈ Γ onto that generated by the
Tf ∈ T(Γ), and then between the σ algebras σ(Γ) and σ(T(Γ)) generated by Γ, resp.
T(Γ). This isomorphism in turn induces an isometry Uρ from Lα(Ω, σ(Γ), µ) onto
Lα(Ω′, σ(T(Γ)), ν). Approximating every f ∈ Γ by step functions on sets ai ≤ f < bi ,
one sees that Uρ restricts to T on Γ. Moreover the sublattice E generated by Γ is clearly
included in Lα(Ω, σ(Γ), µ), and since Uρ is an embedding, its restriction to E gives the
desired extension of T (in fact since 1 ∈ Γ it turns out that E = Lα(Ω, σ(Γ), µ)).
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b) We treat now the general case. If Φ = {f1, ..., fn} is a finite subset in Γ, the cone
ΓΦ generated by Φ has an element of maximal support f = f1 + ... + fn . This is
also the maximal support of the closed sublattice generated by ΓΦ . Let SΦ be the
support of f and S′Φ that of Tf . After a change of density (reducing to the case where
f = 1SΦ , Tf = 1S′Φ

) limited to the bands generated by ΓΦ , resp. T(ΓΦ), the argument
in part (a) gives an isomorphism UΦ from the closed sublattice generated by ΓΦ onto
that generated by ΓTΦ , which extends T|ΓΦ

. If Φ1 ⊂ Φ2 , then UΦ2|ΓΦ1
= UΦ1 by

uniqueness, so there exists a common extension U of all UΦ ’s to a map from the
sublattice generated by Γ onto that generated by T(Γ). Since U,U−1 are isometric
they extend to the closures.

4 Quantifier elimination for the theory of doubly atomless
BLpLq

Let us first recall what it means for a normed structure M to be ω1 -saturated. For
r > 0 we let Br denote the closed ball of radius r in M. Then M is ω1 -saturated
if for every countable subset C of M, every set Γ(x1, . . . , xn) of positive bounded
formulas in the signature of M in which elements of C are allowed as parameters, and
every r > 0, if each finite subset of Γ(x1, . . . , xn) can be satisfied in M by elements
x1, . . . , xn of Br , then the entire set Γ(x1, . . . , xn) can be satisfied in M by elements of
Br . (This definition is equivalent to [HI, Definition 9.17] in view of [HI, Proposition
9.20].)

In this section we sometimes need that certain normed structures are ω1 -saturated.
For this reason we consider ultrapowers with respect to a given countably incomplete
ultrafilter U . Indeed, when the signature of a normed structure M is countable (as is
the case for Banach lattices) and U is countably incomplete, the ultrapower MU is
ω1 -saturated. (See [HI, Proposition 9.18].)

The definition of ω1 -saturation as well as the preceding observation extend without
difficulty to the case of p-normed structures, 0 < p ≤ 1. (See [JL, p. 1102] for
the definition of p-norms.) We shall use the following two facts about ω1 -saturated
structures:

– An ω1 -saturated and order-continuous Banach lattice L is not σ -finite; that is, for
every sequence (ck | k ≥ 1) of elements of L there exists a non-zero element x of L that
is disjoint from every ck . (Proof: for every n ≥ 1 there exists a normalized element xn

in L with ‖|xn| ∧ |ck|‖ < 1
n for all k = 1, . . . , n. Applying ω1 -saturation of L using the
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18 C W Henson and Y Raynaud

countable set of parameters C = {ck | k ≥ 1} and the set of positive bounded formulas
Γ(x) = {‖|x| ∧ |ck|‖ < 1

n | n, k ≥ 1} ∪ {‖x‖ = 1} yields a normalized element x
satisfying ‖|x| ∧ |ck|‖ = 0 for all k .)

– If 0 < α <∞ and Lα(Ω,A, µ) is atomless and ω1 -saturated, then every embedding
T from a sublattice of Lα[0, 1] into Lα(Ω,A, µ) can be extended to an embedding
of Lα[0, 1] into Lα(Ω,A, µ). This is proved in [HI, Example 13.18] in the case
1 ≤ α <∞, and the proof extends easily to the non convex case 0 < α < 1 (where Lα
is only α-normed).

4.1 Lemma Let 1 ≤ p, q <∞ and let Y be a fiber-atomless ALpLq -space.
a) For every g ∈ L+

p , y ∈ Y and ε > 0 there exists x ∈ Y such that N(x) = g and
‖|x| ∧ |y|‖ ≤ ε(‖g‖+ ‖y‖).
b) If Y = YU for some ALpLq -Banach lattice Y and some countably incomplete
ultrafilter U , the preceding statement is true with ε = 0.

Proof a) We may assume ε ≤ 1. Since the random norm N maps Y onto the positive
cone of the associated Lp -space, there is x0 ∈ Y with N(x0) = g. Because Y is
fiber-atomless, we may find a component z of |x0|+ |y| with N(z) = εN(|x0|+ |y|).
Setting x = ε−1 g

N(|x0|+|y|) z, we have

|x| ∧ |y| ≤ |x| ∧ (|x0|+ |y|)) ≤ (ε−1|z|) ∧ (|x0|+ |y|) = |z|

and hence:

N(|x|∧ |y|) ≤ N(z) = εN(|x0|+ |y|) and ‖|x|∧ |y|‖ ≤ ε‖N(|x0|+ |y|‖) ≤ ε(‖g‖+‖y‖).

b) Assume that Y is represented as an ALpLq -space, with random norm N : Y → L (for
some abstract Lp -space L). Then YU is represented as an ALpLq -space, with random
norm NU : YU → LU . The pair (Y,L) of Banach lattices, together with the additional
function N : A→ L (which is 1-Lipschitz) form a 2-sorted normed space structure in the
sense of [HI]. Its ultrapower (Y,L,N)U = (YU ,LU ,NU ) is ω1 -saturated, so statement
b) follows immediately from a).

4.2 Proposition Let 1 ≤ p, q <∞ with α := p/q 6∈ N and U a countably incomplete
ultrafilter. Let X,Y be BLpLq -Banach lattices with X separable, Y doubly atomless.
For every proper closed sublattice E of X and every embedding T from E into YU
there is a proper extension T̃ of T that is still an embedding.
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Proof We may represent X as a band in some separable Lp(Ω,A, µ; Lq(Ω′,A′, µ′)) and
assume that Y is equipped with a q-random norm N with values in some atomless Lp -
space Lp(S,Σ, ν). Then YU is equipped with a random norm with values in the abstract
Lp -space (Lp(S,Σ, ν))U that we may represent as a concrete Lp -space Lp(S̃, Σ̃, ν̃). Fix
g ∈ X \ E . It is sufficient to prove that for every finite-dimensional sublattice F of E
the restriction TF of T to F has an extension T̃F to the sublattice generated by F and g
that is an embedding. Indeed this is equivalent to the existence of an element h in YU
satisfying

‖t(Tf1, ...,Tfn, λ1, ..., λm, h)‖ = ‖t(f1, .., fn, λ1, ..., λm, g)‖
for every lattice term t(x1, ..., xn, t1, ..., tm, y) and every choice of parameters f1, .., fn ∈ F ,
λ1, ..., λm ∈ R. One can make this set of conditions ΓF countable by taking a countable
dense subset of parameters. Consider a sequence (Fn) of finite-dimensional sublattices
of E that generates E as closed sublattice of X . The existence of such a sequence
results, for example, from the representation of the order-continuous Banach lattice E
as a Köthe function space and a standard argument based on approximation by simple
functions. By ω1 -saturation of YU there is an element h ∈ YU that satisfies all the
conditions in the union of the sets ΓFn . Then there is a isomorphism T̃ from the closed
sublattice generated by E and g into YU extending T and such that T̃g = h, and such
an extension is clearly unique.

So in the following we may suppose that E is finite-dimensional. Fix disjoint positive
elements f1, ...fn generating E ; set u =

∑n
i=1 fi . Let g0 be the component of g in the

complementary band E⊥ (the subspace of elements of X that are disjoint from E).
We shall assume also that g = g0 + 1Au for some measurable set A ⊂ Ω× Ω′ . Then
iterating the above procedure we shall be able to treat the case where g = g0 + γ.u
where γ is a simple function, and finally, by a density argument, the case of a general
g. Let ϕi = N(fi)q and ψi = N(Tfi)q . Let g′i = 1Afi and g′′i = 1Ac fi ; note that the
closed sublattice generated by E and g is simply the linear span of g0, g′1, g

′′
1 , ..., g

′
n, g
′′
n .

Set ϕ′i = N(g′i)
q , ϕ′′i = N(g′′i )q and ϕ0 = N(g0)q . Note that ϕi = ϕ′i + ϕ′′i for all

i = 1, ..., n. For every λ1, ..., λn ∈ R we have

‖
∑

j

λjfj‖q
X = ‖N(

∑
j

λjfj)‖q
p = ‖

(∑
j

|λj|qN(fj)q)1/q‖q
p = ‖

∑
j

|λj|qϕj‖α

and similarly
‖
∑

j

λjT(fj)‖q
YU = ‖

∑
j

|λj|qψj‖α .

Hence for any positive coefficients λ1, .., λn ≥ 0, we have

‖
∑

j

λjϕj‖α = ‖
∑

j

λjψj‖α.
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By Proposition 3.3 there is an unique isomorphism V from the closed sublattice
generated by ϕ1, .., ϕn onto the closed sublattice generated by ψ1, .., ψn such that
Vϕi = ψi , i = 1, ..., n.

Let A0 = σ(ϕ0, ϕ
′
1, ϕ
′′
1 ..., ϕ

′
n, ϕ
′′
n ) be the generated σ -algebra. Since (Lα(S,Σ, ν))U is

an ω1 -saturated and atomless Lα -space (recall that YU is base-atomless like Y ) there
exists an embedding U , extending V , from Lα(A0) into this Lα -space. We have

ψi = Uϕi = Uϕ′i + Uϕ′′i

for every i = 1, ..., n, with Uϕ′i,Uϕ
′′
i ≥ 0. We need to find a disjoint decomposition

Tfi = h′i + h′′i ∈ YU such that

N(h′i)
q = Uϕ′i,N(h′′i )q = Uϕ′′i

Since YU is fiber-atomless, for every χi ∈ L∞(Ω̃, Σ̃, ν̃) with 0 ≤ χi ≤ 1 we can
find disjoint elements h′i and h′′i in YU such that Tfi = h′i + h′′i and N(h′i)

q =

χiN(Tfi)q,N(h′′i )q = (1 − χi)N(Tfi)q (see Remark 2.4). In the present case, choose
χi = (Uϕ′i)/ψi . Also take h0 ∈ (YU )+ disjoint from h1, ..., hn such that N(h0)q = Uϕ0 .
Such an element exists by Lemma 4.1(b), since the ultrafilter U is countably incomplete
and the ultrapower YU is fiber-atomless. We have then for every λ0, λ

′
1, λ
′′
1 , ...λ

′
n, λ
′′
n ∈ R

N
(
λ0h0 +

n∑
j=2

(λ′jh
′
j + λ′′j h′′j )

)q
= |λ0|qN(h0)q +

n∑
j=2

(|λ′j|qN(h′j)
q + |λ′′j |qN(h′′j )q)

= |λ0|qUϕ0 +

n∑
j=2

(|λ′j|qUϕ′j + |λ′′j |qUϕ′′j )

= U
(
|λ0|qϕ0 +

n∑
j=2

(|λ′j|qϕ′j + |λ′′j |qϕ′′j )
)

while similarly

N
(
λ0g0 +

n∑
j=2

(λ′jg
′
j + λ′′j g′′j )

)q
= |λ0|qϕ0 +

n∑
j=2

(|λ′j|qϕ′j + |λ′′j |qϕ′′j ).

Since U is an isometry, this implies
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‖λ0h0 +

n∑
j=2

(λ′jh
′
j + λ′′j h′′j )‖q

X = ‖N
(
λ0h0 +

n∑
j=2

(λ′jh
′
j + λ′′j h′′j )

)q‖α

= ‖N
(
λ0g0 +

n∑
j=2

(λ′jg
′
j + λ′′j g′′j )

)q‖α

= ‖λ0g0 +
n∑

j=2

(λ′jg
′
j + λ′′j g′′j )‖q

YU .

Therefore, we may define an embedding T̃ extending T by setting T̃g0 = h0, T̃g′i =

h′i, and T̃g′′i = h′′i , for i = 1, ...n.

4.3 Corollary Let 1 ≤ p, q <∞ with α := p/q 6∈ N and U a countably incomplete
ultrafilter. Let X,Y be BLpLq -Banach lattices with X separable, Y doubly atomless.
For every closed sublattice E of X and every embedding from E into YU , there is an
extension T̃ of T to the whole of X that is still an embedding.

Proof Using Zorn’s Lemma one finds a maximal extension T̃ of the given embedding
to some closed sublattice Ẽ of X . By Proposition 4.2 we necessarily have Ẽ = X .

4.4 Corollary For every 1 ≤ p, q < ∞ with α := p/q 6∈ N, the theory of doubly
atomless BLpLq -Banach lattices has quantifier elimination.

Proof By [HI, Proposition 13.17] it is sufficient to prove that every embedding T
from a sublattice E of a separable doubly atomless BLpLq -space X into another doubly
atomless BLpLq -space Y can be extended to an embedding from X into a suitable
ultrapower of Y . This is an immediate consequence of Corollary 4.3 if we take an
ultrapower of Y defined by a countably incomplete ultrafilter.

5 A counterexample to QE for integer values of p/q (6= 1)

As in Lusky’s paper [Lu] we consider the interval I = (0,∞) equipped with the
measures µ1 and µ2 defined by

dµ1(t) = t3e−t(1 + sin t) dt and dµ2(t) = t3e−t(1− sin t) dt.

In view of the identity∫ ∞
0

ts−1e−t sin t dt = Γ(s)2−s/2 sin
sπ
4

for all s > 0
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we have ∫ ∞
0

tk dµ1 =

∫ ∞
0

tk dµ2

for all k ∈ 4N. Hence ∫ ∞
0

f m dµ1 =

∫ ∞
0

f m dµ2

for every integer m and every f in the cone generated by the functions t4` , ` ∈ N. In
particular if we consider the cone C generated by the functions 1 and f1 : t 7→ t4 , the
identity operator T = id|C : C→ C is norm-preserving for the norms of Lm(µ1), resp.
Lm(µ2) (for any integer m ≥ 1).

5.1 Lemma Let m be an integer ≥ 1. There is no positively linear extension
T̃ : Lm(µ1)+ → Lm(µ2)+ of T with ‖T̃‖ ≤ 1 (that is, ‖T̃f‖m ≤ ‖f‖m for every
f ∈ Lm(µ)+ ).

Proof If such an extension T̃ exists, then ‖T̃f‖∞ ≤ ‖f‖∞ for every f ∈ L∞(µ)+ since
0 ≤ f ≤ 1 implies 0 ≤ T̃f ≤ T̃1 = 1. By a standard lattice interpolation argument we
obtain ‖T̃f‖q ≤ ‖f‖q for every f ∈ Lq(µ)+ , for every m ≤ q ≤ ∞. This is indeed a
simple consequence of the identity

uθ = inf{au + b | a, b > 0, aθb1−θ = Cθ}

which is valid for every u ≥ 0 and 0 < θ < 1 with Cθ = θθ(1− θ)1−θ . If m < q <∞,
set θ = m/q. For every f ∈ Lq(µ)+ we have g := f 1/θ ∈ Lm(µ)+ . Then using the fact
that T̃ is non-decreasing, positively linear and T̃1 = T1 = 1

T̃f = T̃(gθ) = T̃( inf
aθb1−θ=Cθ

ag + b1) ≤ inf
aθb1−θ=Cθ

aT̃g + bT1 = (T̃g)θ

hence
‖T̃f‖q ≤ ‖(T̃g)θ‖q = ‖T̃g‖θm ≤ ‖g‖θm = ‖f‖q

Now we compare the Lq -norms of f1 and T̃f1 = Tf1

‖Tf1‖q
q − ‖f1‖q

q = −2
∫ +∞

0
t4q+3e−t sin t dt = −2−2q−1Γ(4(q + 1)) sin[(q + 1)π]

For every m we can find q > m such that the last expression is strictly positive, i.e.
‖Tf1‖q > ‖f1‖q , which is a contradiction.

The following result is a consequence of some of the results in [GR] in the case where
E = F . In the separable case it is implied by the results of Koldobskii [Ko]. Since the
results of [GR] are somewhat dispersed and are stated in greater generality, we give
here a self-contained proof.
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5.2 Lemma If T is an embedding of a space E = Lp(µ; Lq(ν)) into a space F =

Lp(µ′; Lq(ν ′)) there exists a positive and isometric linear map S from Lp(µ) into Lp(µ′)
such that

∀f ∈ E [N(Tf ) = SN(f ))]

Proof We first remark that T maps base-disjoint vectors onto base-disjoint vectors.
For, T maps disjoint vectors onto disjoint vectors, and if f , g are base-disjoint

‖Tf + Tg‖p = ‖f + g‖p = ‖f‖p + ‖g‖p = ‖Tf‖p + ‖Tg‖p

hence Tf ,Tg are base-disjoint (see the proof of Lemma 2.1).

We now show that N(Tf ) depends only on N(f ). If the space Lq(ν) has dimension 1 this
is trivial (then N(f ) = |f | and N(Tf ) = N(|Tf |) = N(T|f |) since T is an embedding). If
Lq(ν) has dimension at least 2, we can decompose it into two complementary bands B1 ,
B2 (hence Lq(ν) = B1 ⊕q B2 ). Let Ei = Lp(µ; Bi), i = 1, 2. If xi ∈ Bi , i = 1, 2 are
two non-zero vectors and ϕ ∈ Lp(µ), then setting fi = ϕ⊗ xi∫

(N(Tf1)q + N(Tf2)q)p/q dµ′ =
∫

N(Tf1 + Tf2)p dµ′ = ‖T(f1 + f2)‖p

= ‖f1 + f2‖p = (‖x1‖q
q + ‖x2‖q

q)p/q‖ϕ‖p
p

= (‖f1‖q + ‖f2‖q)p/q = (‖Tf1‖q + ‖Tf2‖q)p/q

= (‖N(Tf1)‖q
p + ‖N(Tf2)‖q

p)p/q.

In other words

‖N(Tf1)q + N(Tf2)q‖p/q = ‖N(Tf1)q‖p/q + ‖N(Tf2)q‖p/q;

i.e., the functions N(Tf1)q and N(Tf2)q satisfy the equality case in Minkowski’s inequality
if p > q, resp. the reverse Minkowski inequality if p < q. This is possible only if they
are proportional, hence N(Tf2) = λN(Tf1) with λ = ‖N(Tf2)‖p/‖N(Tf1)‖p = ‖f2‖/‖f1‖,
and since

‖Tfi‖
‖xi‖

=
‖fi‖
‖xi‖

= ‖ϕ‖ , i = 1, 2

we obtain
N(Tf1)
‖x1‖

=
N(Tf2)
‖x2‖

:= α

for some element α ∈ L+
p (µ′) satisfying ‖α‖p = ‖ϕ‖p . It is clear that α depends only

on ϕ (not on the particular choice of the xi ∈ Bi ); accordingly, we shall write α = A(ϕ).
Moreover if x ∈ Lq(ν), denoting by xi its component in Bi

N(T(ϕ⊗x)) = (N(T(ϕ⊗x1))q+N(T(ϕ⊗x2))q)1/q = (‖x1‖q+‖x2‖q)1/qA(ϕ) = ‖x‖A(ϕ).
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Since the equality of the first and last term was also clear in the case where Lq(ν) is
1-dimensional, from now on we do not make any assumption about the dimension of
Lq(ν).

The map A : L+
p (µ) → L+

p (µ′) is clearly homogeneous of degree one and preserves
disjointness (since T preserve base-disjointness). It follows immediately that A is
additive on simple functions in L+

p (µ), and since it is continuous (by continuity of T ) it
is additive on L+

p (µ). It is extended to a map S : Lp(µ)→ Lp(ν) by setting

ϕ = ψ − θ with ψ, θ ∈ L+
p (µ) =⇒ S(ϕ) = A(ψ)− A(θ).

Then S is a positive linear isometry since (denoting by ϕ+ and ϕ− the positive and
negative part of ϕ)

‖Sϕ‖p = ‖A(ϕ+)− A(ϕ−)‖p = ‖A(ϕ+)‖p + ‖A(ϕ−)‖p = ‖ϕ+‖p + ‖ϕ−‖p = ‖ϕ‖p.

Note that if ϕ1, .., ϕn are disjoint elements in L+
p (µ) and x1, .., xn are arbitrary vectors

(not necessarily disjoint) in Lq(ν) we have

N
(
T
(∑

i

ϕi ⊗ xi
))

=
∑

i

N
((

Tϕi ⊗ xi
))

=
∑

i

‖xi‖S(ϕi)

= S
(∑

i

‖xi‖ϕi
)

= S
(
N
(∑

i

ϕi ⊗ xi
))
.

By density of the simple functions in Lp(µ; Lq(ν)) we obtain

N(Tf ) = S(N(f ))

for every f ∈ E .

5.3 Lemma Let n ≥ 1 be an integer, 1 ≤ p 6= q <∞, α = p/q, Lp = Lp(Ω,A, µ),
Lq = Lq(Ω′,A′, µ′) and E = Lp(Lq). Assume that Lq is at least n-dimensional and
denote by Lα the Lebesgue space Lα(Ω,A, µ). If the theory of the Banach lattice E
satisfies quantifier elimination, then for all n-tuples ϕ = (ϕ1, .., ϕn), ψ = (ψ1, .., ψn)
in L+

α such that

∀λ1, ..., λn ∈ R+

(
‖

n∑
i=1

λiϕi‖α = ‖
n∑

i=1

λiψi‖α
)

there is a normed cone morphism Sα from L+
α into the positive cone L+ of some

ultrapower L of Lα such that Sαϕi = ψi , i = 1, ...n.

Proof We can find f = (f1, ..., fn) and g = (g1, ...gn) in E such that the fi (resp the
gi ) are pairwise disjoint and N(fi)q = ϕi , N(gi)q = ψi , i = 1, ..., n. Then for every
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λ1, ..., λn ∈ R we have

N
( n∑

i=1

λifi
)

=
n∑

i=1

|λi|qϕi

N
( n∑

i=1

λigi
)

=

n∑
i=1

|λi|qψi

hence

‖
n∑

i=1

λifi‖E = ‖
n∑

i=1

λigi‖E.

Thus the linear map T0 : span(fi)→ E such that T0fi = gi , i = 1, . . . , n is an isometry;
in fact F := span(fi) is a sublattice of E and T0 is an embedding. By quantifier
elimination for E there exists an embedding T from E into some ultrapower EU of
E such that Tfi = gi , i = 1, ..n (see [HI, Proposition 13.17]). EU is an ALpLq -space
with random norm taking values in (Lp)U and can be viewed as a band in some
(Lp)U (Lq(ν))-space (up to an isomorphism preserving the (Lp)U -valued random norm).
That is, we can replace T by an embedding into (Lp)U (Lq(ν)). By Lemma 5.2 there
exists a positive isometric linear map S of Lp into (Lp)U such that

N(Tf ) = SN(f )

for every f ∈ Lp . Since every isometric linear and positive map between Lp -spaces
automatically preserves the lattice operations, S induces embeddings Sα of the whole
scale of corresponding Lα -spaces, defined by

Sαf = (sgn Sf )(S|f |α/p)p/α

In particular for α = p/q this embedding Lα → (Sα)U satisfies

Sαϕi = (Sϕ1/q
i )q = (SN(fi))q = N(gi)q = ψi

for all i = 1, ...n.

5.4 Proposition Let Lp = Lp([0, 1]) and Lq be any at least 2-dimensional Lq -space.
Then for p/q ∈ N, p/q > 1 the theory of the Banach lattice Lp(Lq) does not satisfy
quantifier elimination.

Proof Let µ1 , µ2 be the measures on (0,∞) defined at the beginning of the section,
and f0 = 1, f1 : t→ t4 be the functions considered in Lemma 5.1. Let α = p/q and U ,
resp. V be isomorphisms from Lα(µ1), resp. Lα(µ2) onto Lα ; set ϕi = Ufi, ψi = Vfi ,
i = 1, 2. By construction of f1, f2 we have

‖λ1ϕ1 + λ2ϕ2‖α = ‖λ1ψ1 + λ2ψ2‖α
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for all scalars λ1, λ2 . If Lp(Lq) has quantifier elimination, then by Lemma 5.3 there are
an ultrapower (Lα)U and an embedding S : Lα → (Lα)U such that Sϕi = ψi , i = 0, 1.
Then T = V−1

U SU is an embedding from Lα(µ1) into Lα(µ2)U preserving the functions
f0, f1 . Since α > 1 there is a positive contractive projection P from Lα(µ2)U onto
Lα(µ2). [In the present case it can be presented as the weak limit projection, but its
existence also results from the fact that every sublattice of Lα , α ≥ 1 is contractively
complemented.] Then PT restricts to a positively linear norm-decreasing map from
L+
α (µ1) to L+

α (µ2) fixing 1 and f1 , which contradicts Lemma 5.1.

In particular, it follows from Propositions 2.6 and 5.4 that the theory of doubly atomless
BLpLq -Banach lattices does not have quantifier elimination when 1 ≤ p 6= q <∞ and
p/q ∈ N.

6 Model completeness for integer values of p/q (6= 1)

In this final section we discuss (without proofs) the theory of doubly atomless BLpLq -
Banach lattices in the cases where it does not have quantifier elimination. Namely, we
consider 1 ≤ p 6= q <∞ such that p/q is an integer. Although this theory does not
have quantifier elimination (as was shown in the previous section), it does have the
slightly weaker property of being model complete.

A theory T is said to be model complete if whenever X,Y are models of T and X is a
substructure of Y , it is always the case that X is an elementary substructure of Y . This
is obviously true when T admits quantifier elimination. In classical model theory, T is
model complete iff every formula is equivalent in T to an existential formula, which is
one written in prenex normal form as

∃x1 . . . ∃xmϕ(x1, . . . , xm, y1, . . . , yn)

in which ϕ contains no quantifiers. In the setting of Banach lattices, in which one
uses an approximate logic such as the logic of positive bounded formulas [HI], model
completeness is expressed equivalently by the condition that an arbitrary formula can
be approximated arbitrarily closely by a sequence of existential formulas (uniformly on
bounded balls of each fixed radius in all models of the theory).

A “soft” way to prove model completeness in certain cases is provided by the following
special case of a theorem that is due to Lindström in the setting of classical model
theory:
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6.1 Proposition Let T be a theory of Banach lattices that has no finite dimensional
models. If T is separably categorical and the class of models of T is closed under
unions of increasing chains, then T is model complete.

Proof See Theorem 7.3.4 in [Ho] for a proof of the analogous result in classical model
theory. This proof can be easily adapted to the current setting, using tools from [HI].
We omit the details.

6.2 Corollary For every 1 ≤ p 6= q < ∞, the theory of doubly atomless BLpLq -
Banach lattices is model complete.

Proof The theory of doubly atomless BLpLq -Banach lattices is axiomatizable by
Proposition 2.5, so it is the class of all models of its theory. Clearly every doubly
atomless BLpLq -Banach lattice is infinite dimensional. The theory of this class is
separably categorical by Proposition 2.6 and it is closed under unions of increasing
chains by Proposition 2.8. The Corollary follows using Proposition 6.1.

We remark that Corollary 6.2 allows us to identify the theory of doubly atomless
BLpLq -Banach lattices as the model companion of the theory of all BLpLq -Banach
lattices. First we discuss the concept in general. Suppose we are given theories S,T
in the same language. We say S is a model companion of T if (a) every model of T
embeds in a model of S; (b) every model of S embeds in a model of T ; and (c) S is
model complete. In that situation it can be shown that S is uniquely determined by T .
Indeed, letting T0 be the theory of the class of substructures of models of T , the model
companion S of T will (when it exists) have exactly the existentially closed models of
T0 as its models. (A discussion of model companions in the setting of classical model
theory is in [Ho, pp. 198–200]; this material can be easily carried over to the positive
bounded setting.) In model theory, the passage from a given theory T to its model
companion S (when it exists) often yields a theory with very good model theoretic
properties that can also be used to study (substructures of) models of T .

6.3 Corollary The theory of doubly atomless BLpLq -Banach lattices is the model
companion of the theory of all BLpLq -Banach lattices.

Proof Each of the classes mentioned is axiomatizable (by Proposition 2.5 and [HR,
Corollary 2.10]); thus each is the class of all models of its theory. The theory of doubly
atomless BLpLq -Banach lattices is model complete by Corollary 6.2, and it extends the
theory of all BLpLq -Banach lattices. Finally, every BLpLq -Banach lattice is contained
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(as a band) in an LpLq -Banach lattice, which can be extended to a doubly atomless
LpLq -Banach lattice (by extending its underlying measure spaces to atomless measure
spaces).

We conclude by indicating directions for further research:

The paper [BBH] contains an extensive study of model theoretic properties of atomless
Lp -Banach lattices. In particular, it is shown that the theory of this class is ω -stable, and
the model theoretic independence relation of this theory is characterized using familiar
concepts from analysis. Further, it is shown that canonical bases exist as tuples from
the model. The corresponding properties should be studied for the theory of doubly
atomless BLpLq -Banach lattices.

In particular:

(1) Suppose X,Y are doubly atomless BLpLq -Banach lattices and a ∈ Xn and b ∈ Yn

are finite tuples; what does it mean for (X, a) and (Y, b) to be elementarily equivalent?
That is, what do model theoretic types express in doubly atomless BLpLq -Banach
lattices? (For the meaning of types in atomless Lp -Banach lattices see Proposition 3.7
in [BBH] and the discussion following it, as well as Proposition 5.4 in [BBH].)

(2) Is the theory of doubly atomless BLpLq -Banach lattices stable? If so, (a) for which
cardinals κ ≥ ω is this theory κ-stable? (b) What is the model theoretic independence
relation for this theory? (c) Do types have canonical bases that are sets of ordinary
elements, or must one add imaginaries? (For the answers to these questions for atomless
Lp -Banach lattices, see the following results in [BBH]: Theorem 3.15 for (a); the theory
is κ-stable for every κ. Theorem 4.12 and Lemma 5.11 for (b). Theorem 6.2 for (c);
canonical bases that are sets of ordinary elements do exist.)
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