Projective maximal families of orthogonal measures with large continuum

VERA FISCHER SY DAVID FRIEDMAN ASGER TÖRNQUIST

Abstract: We study maximal orthogonal families of Borel probability measures on 2^{ω} (abbreviated m.o. families) and show that there are generic extensions of the constructible universe L in which each of the following holds:

- (1) There is a Δ_3^1 -definable well-ordering of the reals, there is a Π_2^1 -definable m.o. family, there are no Σ_2^1 -definable m.o. families and $\mathfrak{b} = \mathfrak{c} = \omega_3$ (in fact any reasonable value of \mathfrak{c} will do).
- (2) There is a Δ_3^1 -definable well-ordering of the reals, there is a Π_2^1 -definable m.o. family, there are no Σ_2^1 -definable m.o. families, $\mathfrak{d} = \omega_1$ and $\mathfrak{c} = \omega_2$.

2010 Mathematics Subject Classification 03E15, 03E17, 03E20, 03E35, 03E45 (primary)

Keywords: projective families of orthogonal measures, projective wellorders, large continuum

1 Introduction

Let X be a Polish space, and let P(X) denote the Polish space of Borel probability measures on X, in the sense of [9, 17.E]. Recall that if $\mu, \nu \in P(X)$ then μ and ν are said to be *orthogonal*, written $\mu \perp \nu$, if there is a Borel set $B \subseteq X$ such that $\mu(B) = 0$ and $\nu(X \setminus B) = 0$. A set of measures $\mathcal{A} \subseteq P(X)$ is said to be *orthogonal* if whenever $\mu, \nu \in \mathcal{A}$ and $\mu \neq \nu$ then $\mu \perp \nu$. A *maximal orthogonal family*, or *m.o. family*, is an orthogonal family $\mathcal{A} \subseteq P(X)$ which is maximal under inclusion.

The present paper is concerned with the study of *definable* m.o. families. A well-known result due to Preiss and Rataj [13] states that there are no analytic m.o. families. In a recent paper [3] it was shown by Fischer and Törnquist that if all reals are constructible then there is a Π_1^1 m.o. family. The latter paper also raised the question how restrictive the existence of a definable m.o. family is on the structure of the real line, since it was shown that Π_1^1 m.o. families cannot coexist with Cohen reals.

In the present paper we study Π_2^1 m.o. families in the context of $\mathfrak{c} \geq \omega_2$, with the additional requirement that there is a Δ_3^1 -definable wellorder of \mathbb{R} . Our main results are:

Published: April 2012 doi: 10.4115/ila.2012.4.9

Theorem 1 It is consistent with $\mathfrak{c} = \mathfrak{b} = \omega_3$ that there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 definable maximal orthogonal family of measures and there are no Σ_2^1 -definable maximal sets of orthogonal measures.

There is nothing special about $\mathfrak{c} = \omega_3$: The same result can be obtained for any reasonable value of \mathfrak{c} .

Theorem 2 It is consistent with $\mathfrak{d} = \omega_1$, $\mathfrak{c} = \omega_2$ that there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 definable maximal orthogonal family of measures and there are no Σ_2^1 -definable maximal sets of orthogonal measures.

Taken together these theorems indicate that the existence of a Π_2^1 m.o. family does not seem to impose any severe restrictions on the structure of the real line. On the other hand, we show (Proposition 1) that Σ_2^1 m.o. families cannot coexist with either Cohen or random reals, extending the previous result of Fischer and Törnquist that Π_1^1 m.o. families cannot coexist with Cohen reals. This is the explanation why in the models produced to prove Theorems 1 and 2 there are no Σ_2^1 m.o. families.

The theorems of this paper belong to a line of results concerning the definability of certain combinatorial objects on the real line and in particular the question of how low in the projective hierarchy such objects exist. In [12] Mathias showed that there is no Σ_1^1 -definable maximal almost disjoint (mad) family in $[\omega]^{\omega}$. Assuming V = L, Miller obtained a Π_1^1 mad family in $[\omega]^{\omega}$, see [11].

The study of the existence of definable combinatorial objects on $\mathbb R$ in the presence of a projective wellorder of the reals and $\mathfrak c \geq \omega_2$ was initiated in [1], [4] and [2]. The wellorder of $\mathbb R$ in all those models has a Δ_3^1 -definition, which is indeed optimal for models of $\mathfrak c \geq \omega_2$, since by Mansfield's theorem (see [7, Theorem 25.39]) the existence of a Σ_2^1 -definable wellorder of the reals implies that all reals are constructible. The existence of a Π_2^1 -definable ω -mad family in $[\omega]^\omega$ in the presence of $\mathfrak c = \mathfrak b = \omega_2$ was established by Friedman and Zdomskyy in [4]. In the same paper, referring to earlier results (see [14] and [8]) they outlined the construction of a model in which $\mathfrak c = \omega_2$ and there is a Π_1^1 -definable ω -mad family: Start with the constructible universe L, obtain a Π_1^1 -definable ω mad family and proceed with a countable support iteration of length ω_2 of Miller forcing. The techniques were further developed in [2] to establish a model in which there is a Π_2^1 -definable ω -mad family and $\mathfrak c = \mathfrak b = \omega_3$. In particular, in the models from [4] and [2], there are no maximal almost disjoint families of size $< \mathfrak c$ and so the almost disjointness number has a Π_2^1 -witness.

The present paper combines the encoding techniques of [3] with the techniques of [1, 4, 2] to obtain Theorems 1 and 2. We note that one significant difference from the situation for mad families is that m.o. families always have size \mathfrak{c} (see [3, Proposition 4.1]). Moreover, owing to the fact that our coding technique for measures (Lemma 1) preserves the measure class, the forcing constructions in §3 and §4 is somewhat simplified compared to [1, 4, 2].

Acknowledgement. The authors would like to thank the Austrian Science Fund FWF for generous support through grants no. P 20835-N13 (Fischer, Friedman), and P 19375-N18 (Friedman, Törnquist), as well as a Marie Curie grant from the European Union no. IRG-249167 (Törnquist). The paper was written while Asger Törnquist was a post-doctoral fellow at the Kurt Gödel Research Center.

2 Preliminaries

In this section, we briefly recall the coding of probability measures on 2^{ω} and the encoding technique for measures introduced in [3].

Let X be a Polish space. Recall that if $\mu, \nu \in P(X)$ then μ is said to be *absolutely continuous* with respect to ν , written $\mu \ll \nu$, if for all Borel subsets of X we have that $\nu(B) = 0$ implies that $\mu(B) = 0$. Two measures $\mu, \nu \in P(2^{\omega})$ are called *absolutely equivalent*, written $\mu \approx \nu$, if $\mu \ll \nu$ and $\nu \ll \mu$.

If $s \in 2^{<\omega}$ we let $N_s = \{x \in 2^\omega : s \subseteq x\}$ be the basic neighbourhood determined by s. Following [3], we let

$$p(2^{\omega}) = \{ f : 2^{<\omega} \to [0,1] : f(\emptyset) = 1 \land (\forall s \in 2^{<\omega}) f(s) = f(s^{\smallfrown}0) + f(s^{\smallfrown}1) \}.$$

The spaces $p(2^{\omega})$ and $P(2^{\omega})$ are homeomorphic via the recursive isomorphism $f \mapsto \mu_f$ where $\mu_f \in P(2^{\omega})$ is the measure uniquely determined by requiring that $\mu_f(N_s) = f(s)$ for all $s \in 2^{<\omega}$. We call the unique real $f \in p(2^{\omega})$ such that $\mu = \mu_f$ the *code* for μ . The identification of $P(2^{\omega})$ and $P(2^{\omega})$ allows us to use the notions of effective descriptive set theory in the space $P(2^{\omega})$. For instance, the set $P_c(2^{\omega})$ of all non-atomic probability measures on $P(2^{\omega})$ is arithmetical because the set $P(2^{\omega}) = \{f \in p(2^{\omega}) : \mu_f \text{ is non-atomic}\}$ is easily seen to be arithmetical, as shown in [3].

We will use the method of coding a real $z\in 2^\omega$ into a measure $\mu\in P_c(2^\omega)$ introduced in [3]. For convenience we recall the construction in minimal detail. Given $\mu\in P_c(2^\omega)$ and $s\in 2^{<\omega}$ we let $t(s,\mu)$ be the lexicographically least $t\in 2^{<\omega}$ such that $s\subseteq t$, $\mu(N_{t^\frown 0})>0$ and $\mu(N_{t^\frown 1})>0$, if it exists and otherwise we let $t(s,\mu)=\emptyset$. Define recursively $t_n^\mu\in 2^{<\omega}$ by letting $t_0^\mu=\emptyset$ and $t_{n+1}^\mu=t(t_n^{\mu^\frown 0},\mu)$. Since μ is non-atomic, we have $\mathrm{lh}(t_{n+1}^\mu)>\mathrm{lh}(t_n^\mu)$. Let $t_\infty^\mu=\bigcup_{n=0}^\infty t_n^\mu$. For $f\in p_c(2^\omega)$ and $n\in\omega\cup\{\infty\}$ we will write t_n^μ for $t_n^{\mu f}$. Clearly the sequence $(t_n^f:n\in\omega)$ is recursive in f.

Define the relation $R \subseteq p_c(2^{\omega}) \times 2^{\omega}$ as follows:

$$R(f,z) \iff (\forall n \in \omega) \left(z(n) = 1 \iff (f(t_n^f)^\circ 0) = \frac{2}{3} f(t_n^f) \land f(t_n^f)^\circ 1 \right) = \frac{1}{3} f(t_n)) \right)$$
$$\land \left(z(n) = 0 \iff f(t_n^f)^\circ 0 \right) = \frac{1}{3} f(t_n^f) \land f(t_n^f)^\circ 1 \right) = \frac{2}{3} f(t_n^f) \right).$$

Whenever $(f, z) \in R$ we say that f codes z. Note that $dom(R) = \{f \in p_c(2^\omega) : (\exists z)R(f, z)\}$ is Π_1^0 and so the function $r : dom(R) \to 2^\omega$, where r(f) = z if and only if $(f, z) \in R$, is also Π_1^0 . The key properties of this construction is contained in the following Lemma (see [3, Coding Lemma]):

Lemma 1 There is a recursive function $\bar{r}: p_c(2^\omega) \times 2^\omega \to p_c(2^\omega)$ such that $\mu_{\bar{r}(f,z)} \approx \mu_f$ and $R(\bar{r}(f,z),z)$ for all $f \in p_c(2^\omega)$ and $z \in 2^\omega$.

The proofs of Theorems 1 and 2 use the following result, which we now prove.

Proposition 1 Let $a \in \mathbb{R}$ and suppose that there either is a Cohen real over L[a] or there is a random real over L[a]. Then there is no $\Sigma_2^1(a)$ m.o. family.

We first need a preparatory Lemma. In 2^{ω} , consider the equivalence E_I defined by

$$xE_Iy \iff \sum_{n=0}^{\infty} \frac{|x(n)-y(n)|}{n+1} < \infty.$$

We identify 2^{ω} with \mathbb{Z}_2^{ω} and equip it with the Haar measure μ .

Lemma 2 Let $A \subseteq 2^{\omega}$ be a Borel set such that $\mu(A) > 0$. Then $E_I \leq_B E_I \upharpoonright A$, where $E_I \upharpoonright A$ is the restriction of E_I to A.

Notation: The constant 0 sequence of length $n \in \omega \cup \{\infty\}$ is denoted 0^n . If $A \subseteq 2^\omega$ and $s \in 2^{<\omega}$ let

$$A_{(s)} = \{ x \in 2^{\omega} : s \widehat{\ } x \in A \},$$

the *localization* of A at s.

Proof of Lemma 2 We may assume that $A \subseteq 2^{\omega}$ is closed. We will define $q_n \in \omega$, $s_{n,i}, s_t \in 2^{<\omega}$ recursively for all $n \in \omega$, $i \in \{0, 1\}$ and $t \in 2^{<\omega}$ satisfying

- (1) $q_0 = 0$ and $q_{n+1} = q_n + lh(s_{n,0})$.
- (2) $s_{0,i} = \emptyset$ and $lh(s_{n,i}) = lh(s_{n,1-i}) > 0$ when n > 0.
- (3) $s_{\emptyset} = \emptyset$ and $s_{t \cap i} = s_t \cap s_{\operatorname{lh}(t)+1,i}$ for all $t \in 2^{<\omega}$, $i \in \{0,1\}$.
- (4) $\frac{1}{n+1} \le \sum_{k=0}^{\ln(s_{n+1,0})} \frac{|s_{n+1,0}(k) s_{n+1,1}(k)|}{q_n + k + 1} \le \frac{2}{n+1}$.
- (5) $N_{s_t} \subseteq A$.
- (6) If $t \in 2^n$ then $\mu(A_{(s_t)}) > 1 2^{-n}$.

Suppose this can be done. We claim that the map $2^{\omega} \to A : x \mapsto a_x$ defined by

$$a_x = \bigcup_{n \in \omega} s_{x \upharpoonright n}$$

is a Borel (in fact, continuous) reduction of E_I to $E_I \upharpoonright A$. To see this, fix $x, y \in 2^{\omega}$ and note that by (4) we have that

$$\sum_{n=0}^{\infty} \frac{|x(n) - y(n)|}{n+1} \le \sum_{n=0}^{\infty} \sum_{k=0}^{\ln(s_{n+1,0})} \frac{|s_{n+1,x(i)}(k) - s_{n+1,y(i)}(k)|}{q_n + k + 1} = \sum_{n=0}^{\infty} \frac{|a_x(n) - a_y(n)|}{n+1} \le 2 \sum_{n=0}^{\infty} \frac{|x(n) - y(n)|}{n+1}$$

so that xE_Iy if and only if $a_xE_Ia_y$.

We now show that we can construct a scheme satisfying (1)–(6) above. Suppose q_k , $s_{k,i}$ and s_t have been defined for all $k \le n$ and $t \in 2^{\le n}$. It is enough to define $s_{n+1,i}$ satisfying (4)–(6). Define

$$f_{q_n}: 2^{\omega} \to [0, \infty]: f_{q_n}(x) = \sum_{k=0}^{\infty} \frac{x(k)}{q_n + k + 1}.$$

It is clear that $f_{q_n}(N_{0^k})$ is dense in $[0, \infty]$ for all $k \in \omega$. Let

$$A' = \{ x \in A : \lim_{k \to \infty} \mu(A_{(x \upharpoonright k)}) \to 1 \},$$

i.e, the set of points in A of density 1. By the Lebesgue density theorem [9, 17.9] we have $\mu(A \setminus A') = 0$. Let $A'' = \bigcap_{t \in 2^n} A'_{(s_t)}$ and note that by (6) we have $\mu(A'') > 0$. Thus the set of differences A'' - A'' contains a neighborhood of 0^{∞} by [9, 17.13]. It follows that there are $x_0, x_1 \in A''$ such that

$$\frac{1}{n+2} \le \sum_{k=0}^{\infty} \frac{|x_0(k) - x_1(k)|}{q_n + k + 1} \le \frac{2}{n+2}.$$

Since all points in $A'_{(s_t)}$ have density 1 in $A'_{(s_t)}$ there is some $k_0 \in \omega$ such that

$$\mu(A'_{(s_{\cdot} \cap x_{i} \upharpoonright k_{0})}) > 1 - 2^{-n-1}$$

for all $t \in 2^n$. Defining $s_{n+1,i} = x_i \upharpoonright k_0$, it is then clear that (4)–(6) holds.

Proof of Proposition 1 As the proof easily relativizes, assume that a=0. We proceed exactly as in [3, Proposition 4.2]. Suppose $A\subseteq P(2^{\omega})$ is a Σ_2^1 m.o. family. Recall from [10] and [3, p. 1406] that there is a Borel function $2^{\omega}\to P(2^{\omega}): x\mapsto \mu^x$ such that

$$xE_Iy \Longrightarrow \mu^x \approx \mu^y$$

and

$$x \not\!\!E_I y \Longrightarrow \mu^x \perp \mu^y$$
.

Define as in [3, Proposition 4.2] a relation $Q \subseteq 2^{\omega} \times P(2^{\omega})^{\omega}$ by

$$Q(x,(\nu_n)) \iff (\forall n)(\nu_n \in A \land \nu_n \not\perp \mu^x) \land (\forall \mu)(\mu \not\perp \mu^x \longrightarrow (\exists n)\nu_n \not\perp \mu)$$

and note that this is Σ_2^1 when A is. Note that $Q(x,(\nu_n))$ precisely when (ν_n) enumerates the measures in A not orthogonal to μ^x (this set is always countable, see [10, Theorem 3.1].) Since A is maximal, each section Q_x is non-empty, and so we can uniformize Q with a (total) function $f: 2^\omega \to p(2^\omega)^\omega$ having a Δ_2^1 graph. Note that assignment

$$x \mapsto A(x) = \{f(x)_n : n \in \mathcal{N}\}\$$

is invariant on the E_I classes.

If there is a Cohen real over L it follows from [6] that f is Baire measurable. Since E_I is a turbulent equivalence relation (in the sense of Hjorth, see e.g. [10]) the map $x \mapsto A(x)$ must be constant on a comeagre set. But this contradicts that all E_I classes are meagre.

If on the other hand there is a random real over L, then f is Lebesgue measurable by [6]. Let $F \subseteq 2^{\omega}$ be a closed set with positive measure on which f is continuous, and let $g: 2^{\omega} \to F$ be a Borel reduction of E_I to $E_I \upharpoonright F$. Note that $x \mapsto A(g(x))$ is then an E_I -invariant Borel assignment of countable subsets of $p(2^{\omega})$, and so since E_I is turbulent the function $f \circ g$ must be constant on a comeagre set. This again contradicts that all E_I classes are meagre.

3 Δ_3^1 w.o. of the reals, Π_2^1 m.o. family, no Σ_2^1 m.o. families with $\mathfrak{b}=\mathfrak{c}=\omega_3$

We proceed with the proof of Theorem 1. We will use a modification of the model constructed in [2]. We work over the constructible universe L. Recall that a transitive ZF^- model is *suitable* if $\omega_3^{\mathcal{M}}$ exists and $\omega_3^{\mathcal{M}} = \omega_3^{L^{\mathcal{M}}}$. If \mathcal{M} is suitable then also $\omega_1^{\mathcal{M}} = \omega_1^{L^{\mathcal{M}}}$ and $\omega_2^{\mathcal{M}} = \omega_2^{L^{\mathcal{M}}}$. Our construction can be considered a two stage process - a preliminary stage and a coding stage. In the preliminary stage (Steps 0 through 3 below), we obtain a generic extension of L over which we can perform a finite support iteration of length ω_3 (coding stage), leading to a model satisfying Theorem 1.

Fix a $\Diamond_{\omega_2}(cof(\omega_1))$ sequence $\langle G_{\xi} : \xi \in \omega_2 \cap cof(\omega_1) \rangle$ which is Σ_1 -definable over L_{ω_2} . For $\alpha < \omega_3$, let W_{α} be the L-least subset of ω_2 coding α and for $1 < \alpha < \omega_3$ let $S_{\alpha} = \{\xi \in \omega_2 \cap cof(\omega_1) : G_{\xi} = W_{\alpha} \cap \xi \neq \emptyset\}$. Then $\vec{S} = \langle S_{\alpha} : 1 < \alpha < \omega_3 \rangle$ is a sequence of stationary subsets of $\omega_2 \cap cof(\omega_1)$, which are mutually almost disjoint. Let $S_{-1} = \{\xi \in \omega_2 \cap cof(\omega_1) : G_{\xi} = \emptyset\}$. Note that S_{-1} is a stationary subset of $\omega_2 \cap cof(\omega_1)$ which is disjoint from all S_{α} 's.

Step 0. For every α such that $\omega_2 \leq \alpha < \omega_3$ shoot a club C_{α} disjoint from S_{α} via the poset \mathbb{P}^0_{α} , consisting of all closed subsets of ω_2 which are disjoint from S_{α} with the extension relation being end-extension, and let $\mathbb{P}^0 = \prod_{\alpha < \omega_3} \mathbb{P}^0_{\alpha}$ be the direct product of the \mathbb{P}^0_{α} 's with supports of size ω_1 , where for $\alpha \in \omega_2$, \mathbb{P}^0_{α} is the trivial poset. Then \mathbb{P}^0 is countably closed, ω_2 -distributive (the proof of which uses the stationarity of S_{-1}) and ω_3 -c.c.

Step 1. We begin by fixing some notation. Let $Lim'(\omega_2)$ be the set of all limit ordinals ξ in ω_2 which can be presented in the form $\xi = \omega \cdot \omega \cdot \alpha''$ for some $\alpha'' \geq 0$. Let $Lim'(\omega_3)$ be the set of all limit ordinals α in ω_3 which can be presented in the form $\alpha = \omega^2 \cdot \alpha' + \xi$, where $\alpha' > 0$ and $\xi \in Lim'(\omega_2)$. Also, whenever $k \in \omega$, X is a set of ordinals and $j \in k$, let $I_j^k(X) = \{\gamma : k \cdot \gamma + j \in X\}$. In particular, let $Even(X) = I_0^2(X) = \{\gamma : 2 \cdot \gamma \in X\}$.

Let $\alpha \in [\omega_2, \omega_3)$. Then $\alpha = \alpha_0 + \omega \cdot k + m$ for some $\alpha_0 \in \operatorname{Lim}'(\omega_3)$, $k, m \in \omega$. Then, let $D_\alpha = D_\alpha^k$ be a subset of ω_2 coding the tuple $(C_\alpha, W_\alpha, \langle W_{\alpha_0 + \omega \cdot j} \rangle_{j \in k+1})$. More precisely, let $D_\alpha = D_\alpha^k$ be a subset of ω_2 such that $I_j^{k+3}(D_\alpha) = W_{\alpha_0 + \omega \cdot j}$ for $j \in k+1$, $I_{k+1}^{k+3}(D_\alpha) = D_\alpha$ and $I_{k+2}^{k+3}(D_\alpha) = C_\alpha$. Now let

$$E_{\alpha} = E_{\alpha}^{k} = \{ \mathcal{M} \cap \omega_{2} : \mathcal{M} \prec L_{\alpha + \omega_{2} + 1}[D_{\alpha}], \omega_{1} \cup \{D_{\alpha}\} \subseteq \mathcal{M} \}.$$

Then E_{α} is a club on ω_2 . Choose $Z_{\alpha} = Z_{\alpha}^k \subseteq \omega_2$ such that $Even(Z_{\alpha}) = D_{\alpha}$ and if $\beta < \omega_2$ is the $\omega_2^{\mathcal{M}}$ for some suitable model \mathcal{M} such that $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\beta \in E_{\alpha}$. Then we have:

(*) $_{\alpha,k}$: If $\beta < \omega_2$, \mathcal{M} is a suitable model such that $\omega_1 \subset \mathcal{M}$, $\omega_2^{\mathcal{M}} = \beta$, and $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\mathcal{M} \vDash \psi_k(\omega_2, Z_{\alpha} \cap \beta)$, where $\psi_k(\omega_2, X)$ is the formula "Even(X) codes a triple $(\bar{C}, \bar{W}, \langle \bar{W}_j \rangle_{j \in k+1})$, where \bar{W} and \bar{W}_k are the L-least codes of ordinals $\bar{\alpha}, \bar{\alpha}_k < \omega_3$ such that $\bar{\alpha}_k$ is the largest limit ordinal not exceeding $\bar{\alpha}$, for $j \in k$ \bar{W}_j is the L-least code for the largest limit ordinal $\bar{\alpha}_j$ strictly smaller than $\bar{\alpha}_{j+1}$, and \bar{C} is a club in ω_2 disjoint from $S_{\bar{\alpha}}$ ".

Similarly to \vec{S} , define a sequence $\vec{A} = \langle A_{\xi} : \xi < \omega_2 \rangle$ of stationary subsets of ω_1 using the "standard" \diamond -sequence. Code Z_{α} by a subset $X_{\alpha} = X_{\alpha}^k$ of ω_1 with the poset \mathbb{P}^1_{α} consisting of all pairs $\langle s_0, s_1 \rangle \in [\omega_1]^{<\omega_1} \times [Z_{\alpha}]^{<\omega_1}$ where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff s_0 is an initial segment of t_0 , $s_1 \subseteq t_1$ and $t_0 \setminus s_0 \cap A_{\xi} = \emptyset$ for all $\xi \in s_1$. Then X_{α} satisfies the following condition:

(**) $_{\alpha,k}$: If $\omega_1 < \beta \leq \omega_2$ and \mathcal{M} is a suitable model such that $\omega_2^{\mathcal{M}} = \beta$ and $\{X_\alpha\} \cup \omega_1 \subset \mathcal{M}$, then $\mathcal{M} \models \phi_k(\omega_1,\omega_2,X_\alpha)$, where $\phi_k(\omega_1,\omega_2,X)$ is the formula: "Using the sequence \vec{A} , X almost disjointly codes a subset \bar{Z} of ω_2 , such that $Even(\bar{Z})$ codes a triple $(\bar{C},\bar{W},\langle\bar{W}_j\rangle_{j\in k+1})$, where \bar{W} and \bar{W}_k are the L-least codes of ordinals $\bar{\alpha}, \bar{\alpha}_k < \omega_3$ such that $\bar{\alpha}_k$ is the largest limit ordinal not exceeding $\bar{\alpha}$, for $j \in k$ \bar{W}_j is the L-least code for the largest limit ordinal $\bar{\alpha}_j$ strictly smaller than $\bar{\alpha}_{j+1}$, and \bar{C} is a club in ω_2 disjoint from $S_{\bar{\alpha}}$ ".

Let $\mathbb{P}^1 = \prod_{\alpha < \omega_3} \mathbb{P}^1_{\alpha}$, where \mathbb{P}^1_{α} is the trivial poset for all $\alpha \in \omega_2$, with countable support. Then \mathbb{P}^1 is countably closed and has the ω_2 -c.c.

Finally we force a localization of the X_{α} 's. Fix ϕ_k as in $(**)_{\alpha,k}$ and define the poset $\mathcal{L}_k(X,X')$ similarly to the poset defined in [2, Definition 1] as follows.

Definition 3.1 Let $X, X' \subset \omega_1$ be such that $\phi_k(\omega_1, \omega_2, X)$ and $\phi_k(\omega_1, \omega_2, X')$ hold in any suitable model \mathcal{M} with $\omega_1^{\mathcal{M}} = \omega_1^L$ containing X and X', respectively. Then let $\mathcal{L}_k(X, X')$ be the poset of all functions $r: |r| \to 2$, where the domain |r| of r is a countable limit ordinal such that:

- (1) if $\gamma < |r|$ then $\gamma \in X$ iff $r(3\gamma) = 1$
- (2) if $\gamma < |r|$ then $\gamma \in X'$ iff $r(3\gamma + 1) = 1$
- (3) if $\gamma \leq |r|$, \mathcal{M} is a countable suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma = \omega_1^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi_k(\omega_1, \omega_2, X \cap \gamma) \land \phi_k(\omega_1, \omega_2, X' \cap \gamma)$.

The extension relation is end-extension.

For every $\alpha \in Lim'(\omega_3)$, $k, m \in \omega$, let $\mathbb{P}^2_{\alpha,k,m} = \mathcal{L}_k(X_{\alpha+\omega\cdot k+m}, X_{\alpha+\omega\cdot k})$ and for $\alpha \in \omega_2$, let \mathbb{P}^2_{α} be the trivial poset. Let

$$\mathbb{P}^2 = (\prod_{\alpha \in Lim'(\omega_3)} \prod_{k,m \in \omega} \mathbb{P}^2_{\alpha,k,m}) \times (\prod_{\alpha \in \omega_2} \mathbb{P}^2_{\alpha})$$

with countable supports. Note that the poset $\mathbb{P}^2_{\alpha,k,m}$, where $\alpha \in Lim'(\omega_3)$, $k,m \in \omega$, produces a generic function in ω_1 2 (of $L^{\mathbb{P}^0*\mathbb{P}^1}$), which is the characteristic function of a subset $Y_{\alpha,k,m}$ of ω_1 with the following property:

 $(***)_{\alpha,k}$: For every $\beta < \omega_1$ and any suitable \mathcal{M} such that $\omega_1^{\mathcal{M}} = \beta$ and $Y_{\alpha,k,m} \cap \beta$ belongs to \mathcal{M} , we have $\mathcal{M} \models \phi_k(\omega_1, \omega_2, X_{\alpha+\omega\cdot k+m} \cap \beta) \land \phi_k(\omega_1, \omega_2, X_{\alpha+\omega\cdot k} \cap \beta)$.

Similarly to the proof of [2, Lemma 1] one can show that $\mathbb{P}_0 := \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$ is ω -distributive.

Step 3. We proceed with the coding stage of our construction. We will define a finite support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \omega_3, \beta < \omega_3 \rangle$ such that $\mathbb{P}_0 = \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$, for every $\alpha < \omega_3$, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a σ -centered poset, in $L^{\mathbb{P}_{\omega_3}}$ there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 -definable maximal family of orthogonal measures, there are no Σ_2^1 -definable maximal families of orthogonal measures and $\mathfrak{b} = \mathfrak{c} = \omega_3$. Along the iteration for every $\alpha < \omega_3$, we will define in $V^{\mathbb{P}_{\alpha}}$ a set O_{α} of codes for measures and a set A_{α} of ordinals. Every \mathbb{Q}_{α} will add a generic real, whose \mathbb{P}_{α} -name will be denoted \dot{u}_{α} and similarly to the proof of [2, Lemma 2] one can prove that $L[G_{\alpha}] \cap {}^{\omega}\omega = L[\langle \dot{u}_{\xi}^{G_{\alpha}} : \xi < \alpha \rangle] \cap {}^{\omega}\omega$ for every \mathbb{P}_{α} -generic filter G_{α} . This gives a canonical wellorder of the reals in $L[G_{\alpha}]$ which depends only on the sequence $\langle \dot{u}_{\xi} : \xi < \alpha \rangle$, whose \mathbb{P}_{α} -name will be denoted by $\dot{<}_{\alpha}$. We can additionally arrange that for $\alpha < \beta$, $\dot{<}_{\alpha}$ is an initial segment of $\dot{<}_{\beta}$, where $\dot{<}_{\alpha} = \dot{<}_{\alpha}^{G_{\alpha}}$ and $\dot{<}_{\beta} = \dot{<}_{\beta}^{G_{\beta}}$. Then if G is a \mathbb{P}_{ω_3} -generic filter over L, then $\dot{<}_{\alpha} = \bigcup \{\dot{<}_{\alpha}^G : \alpha < \omega_3\}$ will be the desired wellorder of the reals.

We will need some more notation. If x,y are reals in $L[G_{\alpha}]$ such that $x<_{\alpha}y$, let $x*y=\{2n:n\in x\}\cup\{2n+1:n\notin y\}$ and $\Delta(x*y)=\{2n+2:n\in x*y\}\cup\{2n+1:n\notin x*y\}$. For every $\alpha\in [\omega_2,\omega_3)$, let \dot{F}_{α}^0 , \dot{F}_{α}^1 be \mathbb{P}_{α} -names for nicely definable bijections $F_{\alpha}^0:2^{\omega}\to p_c(2^{\omega})$ and $F_{\alpha}^1:(2^{\omega})^{\omega}\to 2^{\omega}$ in $L[G_{\alpha}]$, respectively, such that whenever $\alpha<\beta$, $i\in\{0,1\}$ we have $F_{\alpha}^i\subseteq F_{\beta}^i$. For example, identifying $p_c(2^{\omega})$ with countable sequences of reals, let $(F_{\alpha}^0)^{-1}$, F_{α}^1 be simply Cantor diagonalization. For every $\nu\in[\omega_2,\omega_3)$ let $i_{\nu}:\nu\cup\{\langle\xi,\eta\rangle:\xi<\eta<\nu\}\to Lim'(\omega_2)$ be a fixed bijection and let $\vec{B}=\langle B_{\zeta,m}:\zeta<\omega_1,m\in\omega\rangle$ be a nicely definable sequence of almost disjoint subsets of ω .

Suppose \mathbb{P}_{α} has been defined and fix a \mathbb{P}_{α} -generic filter G_{α} .

Case A. Suppose $\alpha \in Lim'(\omega_3)$, i.e. $\alpha = \omega^2 \cdot \alpha' + \xi$ for some $\alpha' > 0$, $\xi \in Lim'(\omega_2)$. Let $\nu = o.t.(\dot{<}_{\omega_2 \cdot \alpha'}^{G_{\alpha}})$, $i = i_{\nu}$.

Case A.1. If $i^{-1}(\xi) = \langle \xi_0, \xi_1 \rangle$ for some $\xi_0 < \xi_1 < \nu$, let x_{ξ_0} and x_{ξ_1} be the ξ_0 -th and ξ_1 -th reals in $L[G_{\omega_2 \cdot \alpha'}]$ according to the wellorder $\dot{<}_{\omega_2 \cdot \alpha'}^{G_{\alpha}}$. In $L^{\mathbb{P}_{\alpha}}$ let

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in \bigcup_{m \in \Delta(x_{\xi_0} * x_{\xi_1})} Y_{\alpha+m} \times \{m\} \}^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if $s_1 \subseteq t_1$, s_0 is an initial segment of t_0 and $(t_0 \setminus s_0) \cap B_{\zeta,m} = \emptyset$ for all $\langle \zeta, m \rangle \in s_1$. Let u_α be the generic real added by \mathbb{Q}_α , $A_\alpha = \alpha + \omega \setminus \Delta(x_{\xi_0} * x_{\xi_1})$ and $O_\alpha = \emptyset$. For every $n \geq 1$, let $\mathbb{Q}_{\alpha+n}$ be the poset (in $L^{\mathbb{P}_{\alpha+n}}$) adding a dominating real $u_{\alpha+n}$, which is defined in *Case B* below and let $A_{\alpha+n} = O_{\alpha+n} = \emptyset$.

Case A.2. Suppose $i^{-1}(\xi) = \zeta \in \nu$. Consider the ζ -th real x_{ζ} according to the wellorder $\dot{<}_{\omega_2 \cdot \alpha'}^{G_{\alpha}}$. Let $F^0_{\omega_2 \cdot \alpha'} = \dot{F}^0_{\omega_2 \cdot \alpha'}[G_{\alpha}]$ and let $f_{\alpha} = (F^0_{\omega_2 \cdot \alpha'})(x_{\zeta})$.

Case A.2.1. If f_{α} is not a code for a measure orthogonal to $O'_{\alpha} = \bigcup_{\gamma < \alpha} O_{\gamma}$, for every $n \in \omega$ recursively define in $L^{\mathbb{P}_{\alpha+n}}$, $\mathbb{Q}_{\alpha+n}$ to be the poset for adding a dominating real defined in Case B below and let $A_{\alpha+n} = O_{\alpha+n} = \emptyset$.

Case A.2.2. Otherwise, i.e. in case f_{α} is a code for a measure orthogonal to $O'_{\alpha} = \bigcup_{\gamma < \alpha} O_{\gamma}$, define the poset $\mathbb{Q}_{\alpha+n}$, the set of codes for measures $O_{\alpha+n}$ and the set of ordinals $A_{\alpha+n}$ in $L^{\mathbb{P}_{\alpha+n}}$ recursively as follows.

• \mathbb{Q}_{α} almost disjointly, via the sequence \vec{B} , codes the sequence $\langle Y_{\alpha+m} : m \in \Delta(x_{\zeta}) \rangle$. More precisely let

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in [\bigcup_{m \in \Delta(x_{\zeta})} Y_{\alpha+m} \times \{m\}]^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if $s_1 \subseteq t_1$, s_0 is an initial segment of t_0 and $(t_0 \setminus s_0) \cap B_{\zeta,m} = \emptyset$ for all $\langle \zeta, m \rangle \in s_1$. Let u_α be the generic real added by \mathbb{Q}_α , $A_\alpha = \alpha + \omega \setminus \Delta(u_\alpha)$.

• Let $n \geq 1$. Suppose $\mathbb{Q}_{\alpha+(n-1)}$ has been defined and adds a real $u_{\alpha+(n-1)}$. Then $\mathbb{Q}_{\alpha+n}$ almost disjointly, via the sequence \vec{B} , codes the sequence $\langle Y_{\alpha+\omega\cdot n+m}: m\in\Delta(u_{\alpha+(n-1)})\rangle$. More precisely let

$$\mathbb{Q}_{\alpha+n} = \{ \langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in [\bigcup_{m \in \Delta(u_{\alpha+(n-1)})} Y_{\alpha+\omega \cdot n+m} \times \{m\}]^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if $s_1 \subseteq t_1$, s_0 is an initial segment of t_0 and $(t_0 \setminus s_0) \cap B_{\zeta,m} = \emptyset$ for all $\langle \zeta, m \rangle \in s_1$. Let $u_{\alpha+n}$ be the generic real added by $\mathbb{Q}_{\alpha+n}$, $A_{\alpha+n} = \alpha + \omega \cdot n + \omega \setminus \Delta(u_{\alpha+(n-1)})$.

In $L^{\mathbb{P}_{\alpha+\omega}}$ let $\vec{u}_{\alpha}=(u_n^{\alpha})_{n\in\omega}$, where $u_0^{\alpha}=x_{\zeta}$ and $u_n^{\alpha}=u_{\alpha+n-1}$ whenever $n\geq 1$. Let

$$g_{\alpha} = \bar{r}(F_{\alpha+\omega}^{0}(u_0^{\alpha}), F_{\alpha+\omega}^{1}((u_n^{\alpha})_{n\geq 1}))$$

(see Lemma 1) and for every $n \in \omega$ let $O_{\alpha+n} = \{g_{\alpha}\}.$

Case B. Suppose either $\alpha \in \omega_2$, or $\alpha \in Lim(\omega_3) \setminus Lim'(\omega_3)$, or α is a successor ordinal in (ω_2, ω_3) which is not of the form $\alpha' + n$ for some $\alpha' \in Lim'(\omega_3)$, $n \in \omega$. Then let \mathbb{Q}_{α} be the following poset for adding a dominating real:

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in \omega^{<\omega}, s_1 \in [\text{o.t.}(\dot{<}_{\alpha}^{G_{\alpha}})]^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if s_0 is an initial segment of t_0 , $s_1 \subseteq t_1$, and $t_0(n) > x_{\xi}(n)$ for all $n \in \text{dom}(t_0) \setminus \text{dom}(s_0)$ and $\xi \in s_1$, where x_{ξ} is the ξ -th real in $L[G_{\alpha}] \cap \omega^{\omega}$ according to the wellorder $\dot{<}_{\alpha}^{G_{\alpha}}$. Let $A_{\alpha} = \emptyset$, $O_{\alpha} = \emptyset$.

With this the definition of \mathbb{P}_{ω_3} is complete. Similarly to [2, Lemma 3] one can show that if G is \mathbb{P}_{ω_3} -generic and $\xi \in \bigcup_{\alpha \in \omega_3} \dot{A}^G_{\alpha}$, then in L[G] there is no real coding a stationary kill of S_{ξ} . We will refer to this fact, as no accidental coding of stationary kill. Also, in $L^{\mathbb{P}_{\omega_3}}$, let $O = \bigcup_{\alpha \in \omega_3} O_{\alpha}$, $F^0 = \bigcup_{\alpha \in \omega_3} F^0_{\alpha}$, $F^1 = \bigcup_{\alpha \in \omega_3} F^1_{\alpha}$ and for $\vec{z} = (z_n)_{n \in \omega}$, let $\mathcal{R}(\vec{z}) = \bar{r}(F^0(z_0), F^1((z_n)_{n \geq 1}))$ (see Lemma 1).

Lemma 3.2 Let G be \mathbb{P}_{ω_3} generic, $g = \mathcal{R}(\vec{z})$ for some $\vec{z} = (z_n)_{n \in \omega}$. Then $g \in O$ if and only if for every countable suitable model \mathcal{M} such that $g \in \mathcal{M}$ there is $\bar{\alpha} < \omega_3^{\mathcal{M}}$ such that for all $n \in \omega$, $S_{\bar{\alpha} + \omega \cdot n + m}$ is non-stationary in $(L[z_{n+1}])^{\mathcal{M}}$ for all $m \in \Delta(z_n)$.

Proof Suppose $g = \mathcal{R}(\vec{z})$ and for every countable suitable model \mathcal{M} such that $g \in \mathcal{M}$, there is $\bar{\alpha} < \omega_3^{\mathcal{M}}$ with the above property. By the Löweinheim-Skolem theorem, the same holds in $\mathbb{H}_{\Theta}^{\mathbb{P}}$, where Θ is sufficiently large and $\mathbb{H}_{\Theta}^{\mathbb{P}}$ denotes the set of all sets hereditary of cardinality $< \Theta$. Thus there is $\alpha < \omega_3$ such that for all $n \in \omega$, $m \in \Delta(z_n)$, $L_{\Theta}[z_{n+1}] \models (S_{\alpha+\omega\cdot n+m}$ is not stationary). Then in particular for some n > 0, $m \in \omega$ the stationary kill of $S_{\alpha+\omega\cdot n+m}$ is coded by a real. Since there is no accidental coding of stationary kill, $\mathbb{Q}_{\alpha+n}$ adds a real $u_{\alpha+n} = u_{n+1}^{\alpha}$ coding a stationary kill of $S_{\alpha+\omega\cdot n+m}$ for all $m \in \Delta(u_n^{\alpha})$, while there are no reals coding the stationary kill of $S_{\alpha+\omega\cdot n+m}$ for $m \notin \Delta(u_n^{\alpha})$. Therefore $\Delta(u_n^{\alpha}) = \Delta(z_n)$ for all n, and so $\vec{u}_{\alpha} = \vec{z}$, which implies $g = g_{\alpha} \in O$.

On the other hand, suppose $g \in \mathcal{R}(\vec{z}) \in O$. Thus $g = g_{\alpha} = \mathcal{R}(\vec{u}_{\alpha})$ and since \mathcal{R} is injective $\vec{u}_{\alpha} = \vec{z}$. Suppose \mathcal{M} is a suitable model which contains g. Then by definition of \bar{r} we have that $F^0(u_0^{\alpha})$ and $F^1((u_n^{\alpha})_{n\geq 1})$ are also in \mathcal{M} . Since F^0, F^1 are nicely definable, \mathcal{M} contains also \vec{u}_{α} . Therefore for all $n \in \omega$, $m \in \Delta(u_n^{\alpha})$ also the sets $Y_{\alpha+\omega\cdot n+m}\cap \omega_1^{\mathcal{M}}$ are in \mathcal{M} . Thus in particular, \mathcal{M} contains the sets $X_{\alpha+\omega\cdot n+m}\cap \omega_1^{\mathcal{M}}$ for all $n \in \omega$, $m \in \Delta(u_n^{\alpha})$. Fix $n, m \in \Delta(u_n^{\alpha})$. By definition of $\mathcal{L}_n(X_{\alpha+\omega\cdot n+m}, X_{\alpha+\omega\cdot n})$ we have that for every $m \in \Delta(u_n^{\alpha})$, in \mathcal{M} , using the sequence \vec{A} , the set $X_{\alpha+\omega\cdot n+m}\cap \omega_1$ almost disjointly codes a subset $\bar{Z}^{n,m}$ of ω_2 , whose even part codes a triple $(C^{n,m}, W^{n,m}, \langle W_j^{n,m} \rangle_{j\in n+1} \rangle)$, where $W^{n,m}$, $W_n^{n,m}$ are the L-least codes of ordinals $\alpha^{n,m}$, $\alpha^{n,m}_n$ in ω_3 such that $\alpha^{n,m}_n$ is the largest limit ordinal not exceeding $\alpha^{n,m}$ and for every $j \in n$, $\alpha^{n,m}_j$ is the largest limit ordinal strictly smaller than $\alpha^{m,n}_{j+1}$. It remains to observe that for every $n_1 < n_2$, m_1, m_2 in ω , we have $W_j^{n_1,m_1} = W_j^{n_2,m_2}$ whenever $j \leq n_1$. Therefore $\alpha^{n,m}_0$ does not depend on n,m and so $\bar{\alpha} = \alpha^{n,m}_0$ is the desired ordinal.

Therefore O has indeed a Π_2^1 definition. We will show that O is maximal in $p_c(2^\omega)$. Indeed, suppose in $L^{\mathbb{P}_{\omega_3}}$ there is a code f for a measure orthogonal to every measure in the family $\bar{O}=\{\mu_g:g\in O\}$. Choose α minimal such that $\alpha=\omega_2\cdot\alpha'+\xi$ for some $\alpha'>0$, $\xi\in Lim'(\omega_2)$ and such that $f\in L[G_{\omega_2\cdot\alpha'}]$. Let $\nu=o.t.(\dot{<}_{\omega_2\cdot\alpha'}^{G_\alpha})$ and let $i=i_\nu$. Then $x=(F_{\omega_2\cdot\alpha'}^0)^{-1}(f)$ is the ζ -th real according to the wellorder $\dot{<}_{\omega_2\cdot\alpha'}^{G_\alpha}$ for some $\zeta\in\nu$, which implies that for some $\xi\in Lim'(\omega_2)$, $i^{-1}(\xi)=\zeta$. But then $x_\zeta=x$ is the code of a measure orthogonal to O'_α and so by construction O_α contains the code of a measure equivalent to μ_f , which is a contradiction. To obtain a Π_2^1 -definable m.o. family in $L^{\mathbb{P}_{\omega_3}}$ consider the union of $\bar{O}=\{\mu_g:g\in O\}$ with the set of all point measures. Just as in [2] one can show that < is indeed a Δ_3^1 -definable wellorder of the reals.

Since \mathbb{P}_{ω_3} is a finite support iteration, we have added Cohen reals along the iteration cofinally often. Thus for every real a in $L^{\mathbb{P}_{\omega_3}}$ there is a Cohen real over L[a] and so by Proposition 1 in $L^{\mathbb{P}_{\omega_3}}$ there are no Σ_2^1 m.o. families. Also note that since cofinally often we have added dominating reals, $L^{\mathbb{P}_{\omega_3}} \models \mathfrak{b} = \omega_3$.

4 Δ_3^1 w.o. of the reals, a Π_2^1 m.o. family, no Σ_2^1 m.o. families with $\mathfrak{d}=\omega_1$ and $\mathfrak{c}=\omega_2$

In this section we establish the proof of Theorem 2. The model is obtained as a modification of the iteration construction developed in [1]. We restate the definitions of the posets used in this construction. For a more detailed account of their properties see [1]. We work over the constructible universe L. For the remainder of this section, we will say that a transitive ZF^- model is *suitable*, if $\omega_2^{\mathcal{M}}$ exists and $\omega_2^{\mathcal{M}} = \omega_2^{\mathcal{M}^L}$.

If $S \subseteq \omega_1$ is a stationary, co-stationary set, then by Q(S) denote the poset of all countable closed subsets of $\omega_1 \setminus S$ with the extension relation being end-extension. Recall that Q(S) is $\omega_1 \setminus S$ -proper, ω -distributive and adds a club disjoint from S (see [1], [5]). For the proof of Theorem 2 we use the form of localization defined in [1, Definition 1]. That is, if $X \subseteq \omega_1$ and $\phi(\omega_1, X)$ is a Σ_1 -sentence with parameters ω_1, X which is true in all suitable models containing ω_1 and X as elements, then let $\mathcal{L}(\phi)$ be the poset of all functions $r: |r| \to 2$, where the domain |r| of r is a countable limit ordinal, such that

- (1) if $\gamma < |r|$ then $\gamma \in X$ iff $r(2\gamma) = 1$
- (2) if $\gamma \leq |r|$, \mathcal{M} is a countable, suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma = \omega_1^{\mathcal{M}}$, then $\phi(\gamma, X \cap \gamma)$ holds in \mathcal{M} .

The extension relation is end-extension. Recall that $\mathcal{L}(\phi)$ has a countably closed dense subset (see [1, Remark 2]) and that if G is $\mathcal{L}(\phi)$ -generic and \mathcal{M} is a countable suitable model containing $(\bigcup G) \upharpoonright \gamma$ as an element, where $\gamma = \omega_1^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi(\gamma, X \cap \gamma)$ (see [1, Lemma 2]).

We will use also the coding with perfect trees defined in [1, Definition 2]. Let $Y \subseteq \omega_1$ be generic over L such that in L[Y] cofinalities have not been changed and let $\bar{\mu} = \{\mu_i\}_{i \in \omega_1}$ be a sequence of L-countable ordinals such that μ_i is the least $\mu > \sup_{j < i} \mu_j$, $L_{\mu}[Y \cap i] \models ZF^-$ and $L_{\mu} \models \omega$ is the largest cardinal. Say that a real R codes Y below i if for all $j < i, j \in Y$ if and only if $L_{\mu_j}[Y \cap j, R] \models ZF^-$. For $T \subseteq 2^{<\omega}$ a perfect tree, let |T| be the least i such that $T \in L_{\mu_i}[Y \cap i]$. Then C(Y) is the poset of all perfect trees T such that $T \in L_{\mu_i}[Y \cap i]$ where for T_0, T_1 conditions in $C(Y), T_0 \leq T_1$ if and only if T_0 is a subtree of T_1 . Recall also that C(Y) is proper and ω -bounding (see [1, Lemmas 7,8]).

Fix a bookkeeping function $F: Lim'(\omega_2) \to L_{\omega_2}$ and a sequence $\vec{S} = (S_\beta : \beta < \omega_2)$ of almost disjoint stationary subsets of ω_1 , defined as in [1, Lemma 14]. Thus F and \vec{S} are Σ_1 -definable over L_{ω_2} with parameter ω_1 , $F^{-1}(a)$ is unbounded in $Lim'(\omega_2)$ for every $a \in L_{\omega_2}$ and whenever \mathcal{M}, \mathcal{N} are suitable models such that $\omega_1^{\mathcal{M}} = \omega_1^{\mathcal{N}}$ then $F^{\mathcal{M}}, \vec{S}^{\mathcal{M}}$ agree with $F^{\mathcal{N}}, \vec{S}^{\mathcal{N}}$ on $\omega_2^{\mathcal{M}} \cap \omega_2^{\mathcal{N}}$. Also if \mathcal{M} is suitable and $\omega_1^{\mathcal{M}} = \omega_1$ then $F^{\mathcal{M}}, \bar{S}^{\mathcal{M}}$ equal the restrictions of F, \vec{S} to the ω_2 of \mathcal{M} . Fix also a stationary subset S of ω_1 which is almost disjoint from every element of \vec{S} .

Recursively we will define a countable support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$ such that in $L^{\mathbb{P}\omega_2}$ there is a Δ_3^1 -definable wellorder of the reals, there is a Π_2^1 definable m.o. family, there are no Σ_2^1 definable m.o. families and $\mathfrak{d} = \aleph_1$, $\mathfrak{c} = \aleph_2$. Along the iteration for every $\alpha < \omega_2$, we will define in $L^{\mathbb{P}_{\alpha}}$ a set O_{α} of

codes for measures and a set A_{α} of ordinals. Define the wellorder $<_{\alpha}$ in $L[G_{\alpha}]$ where G_{α} is \mathbb{P}_{α} -generic just as in [1]. We can assume that all names for reals are nice and that for $\alpha < \beta < \omega_2$, all \mathbb{P}_{α} -names for reals precede in the canonical wellorder $<_L$ of L all \mathbb{P}_{β} -names for reals, which are not \mathbb{P}_{α} -names. For each $\alpha < \omega_2$, define a wellorder $<_{\alpha}$ on the reals of $L[G_{\alpha}]$, where G_{α} is a \mathbb{P}_{α} -generic as follows. If x is a real in $L[G_{\alpha}]$ let σ_x^{α} be the $<_L$ -least \mathbb{P}_{γ} -name for x, where $\gamma \leq \alpha$ is least so that x has a \mathbb{P}_{γ} -name. For x,y reals in $L[G_{\alpha}]$ define $x <_{\alpha} y$ if and only if $\sigma_x^{\alpha} <_L \sigma_y^{\alpha}$. Note that whenever $\alpha < \beta$, then $<_{\alpha}$ is an initial segment of $<_{\beta}$. Then $<_{\beta}^G = \bigcup_{\alpha < \omega_2} \dot{<}_{\alpha}^G$ will be the desired wellorder of the reals in L[G], where G is a \mathbb{P}_{ω_2} -generic filter. For every $\alpha \in \omega_2$, let W_{α} be the L-least subset of ω_1 coding α . Also, for each $\alpha \in \omega_2$, fix \mathbb{P}_{α} -names \dot{F}_{α}^0 , \dot{F}_{α}^1 for nicely definable bijections $F_{\alpha}^0 : 2^{\omega} \to p_c(2^{\omega})$, $F_{\alpha}^1 : (2^{\omega})^{\omega} \to 2^{\omega}$ in $L^{\mathbb{P}_{\alpha}}$ such that for all $i \in \{0,1\}$ and $\alpha < \beta < \omega_2$ in $L^{\mathbb{P}_{\beta}}$ we have $F_{\alpha}^i \subseteq F_{\beta}^i$ (e.g. take $(F_{\alpha}^0)^{-1}$, F_{α}^1 to be Cantor diagonalization).

We proceed with the definition of the poset. Let \mathbb{P}_0 be the trivial poset. Suppose \mathbb{P}_{α} , $\langle O_{\gamma} : \gamma < \alpha \rangle$ and $\langle A_{\gamma} : \gamma < \alpha \rangle$ have been defined. Let G_{α} be a \mathbb{P}_{α} -generic filter.

Case A. Suppose $\alpha \in Lim'(\omega_2) = \{\alpha \in Lim(\omega_2) : \alpha = \omega \cdot \omega \cdot \alpha'' \text{ for some } \alpha'' \geq 0\}$. We will define $\mathbb{P}_{\alpha+\gamma}$ for $\gamma \in \omega \cdot \omega$ recursively as follows.

Case A.1. Suppose $F(\alpha) = \{\sigma_x^{\alpha}, \sigma_y^{\alpha}\}$ is a pair of nice names for reals in $L[G_{\alpha}]$. Let $x = \sigma_x^{\alpha}[G_{\alpha}]$, $y = \sigma_y^{\alpha}[G_{\alpha}]$.

- For every $m \in \omega$, define $\mathbb{Q}_{\alpha+m}$ in $L^{\mathbb{P}_{\alpha+m}}$ as follows. If $m \in \Delta(x * y)$ let $\mathbb{Q}_{\alpha+m} = Q(S_{\alpha+m})$ and if $m \notin \Delta(x * y)$ let $\mathbb{Q}_{\alpha+m}$ be the random real forcing.
- In $L^{\mathbb{P}_{\alpha+\omega}}$ let $X_{\alpha+\omega}$ be a subset of ω_1 , coding W_{α} , coding the pair (x,y), coding a level of L in which α has size at most ω_1 and coding the generic $G_{\alpha+\omega}$, which can be regarded as a subset of an element of L_{ω_2} . Let $\mathbb{K}^1_{\alpha+\omega} = \mathcal{L}(\phi_{\alpha+\omega})$, where $\phi_{\alpha+\omega} = \phi_{\alpha+\omega}(\omega_1, X_{\alpha+\omega})$ is the Σ_1 -sentence which holds if and only if $X_{\alpha+\omega}$ codes a subset W of ω_1 and a pair (x,y) of reals, such that W is the L-least code for an ordinal $\bar{\alpha} < \omega_2$ and $S_{\bar{\alpha}+m}$ is non-stationary for $m \in \Delta(x*y)$. Let $\dot{X}_{\alpha+\omega}$ be a $\mathbb{P}_{\alpha+\omega}$ -name for $X_{\alpha+\omega}$ and let $\dot{\mathbb{K}}^1_{\alpha+\omega}$ be a $\mathbb{P}_{\alpha+\omega}$ -name for $\mathbb{K}^1_{\alpha+\omega}$.
- Let $Y_{\alpha+\omega}$ be $\mathbb{K}^1_{\alpha+\omega}$ -generic over $L[G_{\alpha+\omega}]$. The even part of $Y_{\alpha+\omega}$ codes $X_{\alpha+\omega}$ and so codes the generic $G_{\alpha+\omega}$. Then in $L[Y_{\alpha+\omega}] = L[G_{\alpha+\omega} * Y_{\alpha+\omega}]$, let $\mathbb{K}^2_{\alpha+\omega} = \mathcal{C}(Y_{\alpha+\omega})$. Let $R_{\alpha+\omega}$ be the real added by $\mathbb{K}^2_{\alpha+\omega}$, let $\dot{\mathbb{K}}^2_{\alpha+\omega}$ be a $\mathbb{P}_{\alpha+\omega} * \dot{\mathbb{K}}^1_{\alpha+\omega}$ -name for $\mathbb{K}^2_{\alpha+\omega}$ and let $\mathbb{Q}_{\alpha+\omega} = \mathbb{K}^1_{\alpha+\omega} * \dot{\mathbb{K}}^2_{\alpha+\omega}$.
- For every $\gamma \in [\alpha + \omega + 1, \alpha + \omega \cdot \omega)$ let $\mathbb{Q}_{\alpha+\gamma}$ be a $\mathbb{P}_{\alpha+\gamma}$ -name for the random real forcing.

Case A.2. Suppose $F(\alpha) = \{\sigma_x^{\alpha}\}$ for some nice name for a real σ_x^{α} . Let $x = \sigma_x^{\alpha}[G_{\alpha}], f = F_{\alpha}^{0}(x)$.

Case A.2.1. If f is not a code of a measure orthogonal to $O'_{\alpha} = \bigcup_{\gamma < \alpha} O_{\gamma}$, let $\mathbb{Q}_{\alpha+\gamma}$ be a $\mathbb{P}_{\alpha+\gamma}$ -name for the random real forcing, for all $\gamma \in \omega \cdot \omega$.

Case A.2.2. If f is a code of a measure orthogonal to $O'_{\alpha} = \bigcup_{\gamma < \alpha} O_{\gamma}$, define $\mathbb{Q}_{\alpha+\gamma}$ for $\gamma \in \omega \cdot \omega$ recursively as follows. Let \mathbb{Q}_{α} be the trivial poset (in $L^{\mathbb{P}_{\alpha}}$), and let $R_{\alpha} = x$. Suppose the poset $\mathbb{P}_{\alpha+\omega\cdot n+1}$ and the real $R_{\alpha+\omega\cdot n}$ have been defined.

- For $m \geq 1$ define $\mathbb{Q}_{\alpha+\omega\cdot n+m}$ in $L^{\mathbb{P}_{\alpha+\omega\cdot n+m}}$ recursively as follows. If $m-1 \in \Delta(R_{\alpha+\omega\cdot n})$ let $\mathbb{Q}_{\alpha+\omega\cdot n+m} = Q(S_{\alpha+\omega\cdot n+(m-1)})$ and if $m-1 \in \Delta(R_{\alpha+\omega\cdot n})$ let $\mathbb{Q}_{\alpha+\omega\cdot n+m}$ be the random real forcing.
- Let $G_{\alpha+\omega\cdot n+\omega}$ be a $\mathbb{P}_{\alpha+\omega\cdot n+\omega}$ -generic filter. In $L[G_{\alpha+\omega\cdot n+\omega}]$ let $X_{\alpha+\omega\cdot n+\omega}$ be a subset of ω_1 coding $W_{\alpha+\omega\cdot j}$ for $j\leq n+1$, coding the real $R_{\alpha+\omega\cdot n}$, coding a level of L in which $\alpha+\omega\cdot n+\omega$ has size at most ω_1 and coding the generic $G_{\alpha+\omega\cdot n+\omega}$. Let $\mathbb{K}^1_{\alpha+\omega\cdot (n+1)}$ be the poset $\mathcal{L}(\phi^{n+1}_{\alpha})$, where $\phi^{n+1}_{\alpha}=\phi^{n+1}_{\alpha}(\omega_1,X_{\alpha+\omega\cdot (n+1)})$ is the Σ_1 -sentence which holds if and only if $X_{\alpha+\omega\cdot (n+1)}$ codes the tuple $\langle \bar{W}_j \rangle_{j\leq n+1}$ of subsets of ω_1 and a real x, such that \bar{W}_{n+1} is the L-least code for an ordinal $\bar{\alpha}=\bar{\alpha}_{n+1}$ and for every $j\leq n$, \bar{W}_j is the L-least code for the largest limit $\bar{\alpha}_j$ strictly smaller than $\bar{\alpha}_{j+1}$, and for every $m\in\Delta(x)$, the set $S_{\bar{\alpha}+m}$ is non-stationary. Let $\dot{X}_{\alpha+\omega\cdot (n+1)}$ be a $\mathbb{P}_{\alpha+\omega\cdot (n+1)}$ -name for $X_{\alpha+\omega\cdot (n+1)}$, $\dot{\mathbb{K}}^1_{\alpha+\omega\cdot (n+1)}$ is a $\mathbb{P}_{\alpha+\omega\cdot (n+1)}$ -name for $\mathbb{K}^1_{\alpha+\omega\cdot (n+1)}$.
- Let $Y_{\alpha+\omega\cdot(n+1)}$ be $\mathbb{K}^1_{\alpha+\omega\cdot(n+1)}$ -generic filter over $L[G_{\alpha+\omega\cdot(n+1)}]$. In $L[Y_{\alpha+\omega\cdot(n+1)}]$ (note that the even part of $Y_{\alpha+\omega\cdot(n+1)}$ codes $X_{\alpha+\omega\cdot(n+1)}$ and so the generic $G_{\alpha+\omega\cdot(n+1)}$ let $\mathbb{K}^2_{\alpha+\omega\cdot(n+1)} = \mathcal{C}(Y_{\alpha+\omega\cdot(n+1)})$ and let $R_{\alpha+\omega\cdot(n+1)}$ be the generic real added by $\mathbb{K}^2_{\alpha+\omega\cdot(n+1)}$. Let $\mathbb{Q}_{\alpha+\omega\cdot(n+1)} = \mathbb{K}^1_{\alpha+\omega\cdot(n+1)} * \mathbb{K}^2_{\alpha+\omega\cdot(n+1)}$.

In $L^{\mathbb{P}_{\alpha+\omega\cdot\omega}}$, let $u_n^{\alpha}=R_{\alpha+\omega\cdot n}$ for $n\in\omega$ (in particular $u_0^{\alpha}=x$.) Let $\vec{u}_{\alpha}=(u_n^{\alpha})_{n\in\omega}$ and let

$$g_{\alpha} = \bar{r}(F^0_{\alpha+\omega\cdot\omega}(u^{\alpha}_0), F^1_{\alpha+\omega\cdot\omega}((u^{\alpha}_n)_{n\geq 1}))$$

(see Lemma 1). For every $\gamma \in [\alpha, \alpha + \omega \cdot \omega)$ let $O_{\gamma} = \{g_{\alpha}\}$. For $n \in \omega$, let $A_{\alpha + \omega \cdot n} = \alpha + \omega \cdot n + \omega \setminus \Delta(u_n^{\alpha})$ and for γ successor in $[\alpha, \alpha + \omega \cdot \omega)$, let $A_{\gamma} = \emptyset$.

Case B. Suppose $\alpha \in Lim(\omega_2) \setminus Lim'(\omega_2)$, or α is a successor ordinal in ω_2 which can not be presented in the form $\alpha' + \omega \cdot n + m$ for some $\alpha' \in Lim'(\omega_2)$, $n, m \in \omega$. Then let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α} -name for the random real forcing. Let $O_{\alpha} = A_{\alpha} = \emptyset$.

With this the recursive construction of \mathbb{P}_{ω_2} is complete. Similarly to [1, Lemma 17], one can show that if G is \mathbb{P}_{ω_2} -generic and $\xi \in \bigcup_{\xi \in \omega_2} \dot{A}_{\xi}^G$, then S_{ξ} is stationary in L[G]. We will refer to this fact as *no accidental stationary kill*. In $L^{\mathbb{P}_{\omega_2}}$, let $O = \bigcup_{\alpha < \omega_2} O_{\alpha}$, $F^0 = \bigcup_{\alpha \in \omega_2} F_{\alpha}^0$, $F^1 = \bigcup_{\alpha \in \omega_2} F_{\alpha}^1$ and for $\vec{z} = (z_n)_{n \in \omega} \in (2^{\omega})^{\omega}$ let $\mathcal{R}(\vec{z}) = \bar{r}(F^0(z_0), F^1((z_n)_{n \geq 1}))$ (see Lemma 1).

Lemma 4.1 Let G be \mathbb{P}_{ω_2} -generic and let $g = \mathcal{R}(\vec{z})$, $\vec{z} = (z_n)_{n \in \omega}$. Then $g \in O$ if and only if for every countable suitable model \mathcal{M} such that $g \in \mathcal{M}$, there is $\bar{\alpha} < \omega_2^{\mathcal{M}}$ such that for all $n \in \omega$ the set $S_{\alpha + \omega \cdot n + m}$ is non-stationary in $(L[z_{n+1}])^{\mathcal{M}}$ for $m \in \Delta(z_n)$.

Proof Suppose $g \in O$. Then $g = g_{\alpha} = \mathcal{R}(\vec{u}_{\alpha})$ for some α . Let \mathcal{M} be a countable suitable model such that $g \in \mathcal{M}$. By definition of the function \bar{r} we have that $F^0(u_0^{\alpha})$ and $F^1((u_n^{\alpha}))_{n\geq 1}$ are elements of \mathcal{M} . Since F^0, F^1 are nicely definable, $\vec{u}_{\alpha} \in \mathcal{M}$, and so $Y_{\alpha+\omega\cdot n} \cap \omega_1^{\mathcal{M}} \in \mathcal{M}$ for all n. Thus $X_{\alpha+\omega\cdot n} \cap \omega_1^{\mathcal{M}}$ is also an element of \mathcal{M} . By definition of $\mathcal{L}(\phi_{\alpha+\omega\cdot n}^n)$, the set $X_{\alpha+\omega\cdot n} \cap \omega_1^{\mathcal{M}}$ codes a tuple $\langle W_j^n \rangle_{j\leq n}$ of subsets of ω_1 such that W_n^n is the L-least code of an ordinal α_n^n in ω_2 and for j < n the set W_j^n is the L-least code for the largest limit ordinal α_j^n below α_{j+1}^n . It remains to observe that $W_j^n = W_j^m$ for $j \leq n < m$ and so α_0^n does not depend on n. But then $\bar{\alpha} = \alpha_0^n$ is the desired ordinal.

Suppose that for every countable suitable model \mathcal{M} such that $g \in \mathcal{M}$, there is $\bar{\alpha} < \omega_2^{\mathcal{M}}$ with the desired properties. By the Löwenheim-Skolem theorem, the same holds in $\mathbb{H}_{\Theta}^{\mathbb{P}_{\omega_2}}$ for some large Θ . Therefore there is $\alpha < \omega_2^{\mathcal{M}}$ such that for all $n \in \omega$, the set $S_{\alpha+\omega\cdot n+m}$ is non-stationary iff $m \in \Delta(z_n)$. Since there is no accidental stationary kill, $z_n = u_n^{\alpha}$ for all n, which implies that $g = \mathcal{R}(\vec{u}_{\alpha}) = g_{\alpha} \in O$.

Therefore O indeed has a Π^1_2 -definition. We will show that O is maximal in $p_c(2^\omega)$. Suppose in $L^{\mathbb{P}_{\omega_3}}$ there is a code f of a measure orthogonal to every measure in the family $\bar{O}=\{\mu_g:g\in O\}$. Choose α minimal in $Lim'(\omega_2)$ such that $f\in L[G_\alpha]$ and let $x=(F_\alpha^0)^{-1}(f)$. Since $F^{-1}(\sigma_x^\alpha)$ is unbounded, there is $\alpha'\geq\alpha$ in $Lim'(\omega_2)$ such that $F(\alpha')=\sigma_x^\alpha(=\sigma_x^{\alpha'})$. But then $g_{\alpha'}$ is a code of a measure equivalent to μ_f , which is a contradiction. To obtain a Π^1_2 -definable m.o. family in $L^{\mathbb{P}_{\omega_3}}$, consider the union of \bar{O} with the set of all point measures. Just as in [1] one can show that < is indeed a Δ^1_3 -definable wellorder of the reals.

Since for every real $a \in L^{\mathbb{P}_{\omega_3}}$ there is a random real over L, by Proposition 1 in $L^{\mathbb{P}_{\omega_3}}$ there are no Σ_2^1 m.o. families. The dominating number \mathfrak{d} remains ω_1 in $L^{\mathbb{P}_{\omega_3}}$, since the countable support iteration of S-proper ω -bounding posets is ω -bounding (see [1, Lemma 18] or [5]). This completes our proof of Theorem 2.

We conclude with some open questions.

Remark 4.2 In [3] the following question was raised:

Question 1 If there is a Π_1^1 m.o. family, are all reals constructible?

This is to our knowledge still unsolved. Törnquist has recently shown that the existence of a Σ_2^1 m.o. family implies the existence of a Π_1^1 m.o. family, and that the existence of Σ_2^1 mad family implies the existence of a Π_1^1 mad family.

References

- [1] V. Fischer, S. D. Friedman, *Cardinal characteristics and projective wellorders*, Annals of Pure and Applied Logic 161 (2010), 916–922; doi: 10.1016/j.apal.2009.11.003.
- [2] V. Fischer, S. D. Friedman, L. Zdomskyy, *Projective wellorders and mad families with large continuum*, Annals of Pure and Applied Logic 162 (2011), 853–862; doi: 10.1016/j.apal.2011.04.001.

- [3] V. Fischer, A. Törnquist, *A co-analytic maximal set of orthogonal measures*, Journal of Symbolic Logic, 75 (2010), 1403–1414; doi: 10.2178/jsl/1286198154.
- [4] S. D. Friedman, L. Zdomskyy, *Projective mad families*, Annals of Pure and Applied Logic 161 (2010), 1581–1587; doi: 10.1016/j.apal.2010.06.007.
- [5] M. Goldstern, *A taste of proper forcing*, in Set Theory (Curação, 1995; Barcelona, 1996), 71–82, Kluwer Academic Publishers, Dordrecht, 1998.
- [6] J. I. Ihoda, S. Shelah, Δ_2^1 -sets of reals, Annals of Pure and Applied Logic 42 (1989), 201–223; MR 998607(90f:03081); doi: 10.1016/0168-0072(89)90016-X.
- [7] T., Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
- [8] B. Kastermans, J. Steprāns, Y. Zhang, *Analytic and coanalytic families of almost disjoint functions*, Journal of Symbolic Logic 73 (2008), 1158–1172; doi: 10.2178/jsl/1230396911.
- [9] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, 1995.
- [10] A. Kechris, N. E. Sofronidis, *A strong ergodic property of unary and self-adjoint operators*, Ergodic Theory and Dynamical Systems 21 (2001), 1459–1479; doi: 10.1017/S0143385701001705.
- [11] A. Miller, *Infinite combinatorics and definability*, Annals of Pure and Applied Logic 41 (1989), 179–203; doi: 10.1016/0168-0072(89)90013-4.
- [12] A.R.D. Mathias, *Happy Families*, Annals of Mathematical Logic 12 (1977), 59–111.
- [13] D. Preiss, J.Rataj, *Maximal Sets of Orthogonal Measures are not Analytic* Proceedings of the American Mathematical Society 93(3) (1985), 471–476; doi: 10.1090/S0002-9939-1985-0774005-7.
- [14] D. Raghavan, *Maximal almost disjoint families of functions*, Fundamenta Mathematicae 204 (2009), 241–282; doi: 10.4064/fm204-3-3.

Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1090 Vienna, Austria (Fischer & Friedman) Department of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark (Törnquist) vfischer@logic.univie.ac.at, sdf@logic.univie.ac.at, asger@logic.univie.ac.at

Received: 28 June 2011 Revised: 24 March 2012