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Regions in the nonstandard plane that
contain no standard points

STEVEN C. LETH

Abstract: Nonstandard methods are applied to continuum theory in the plane.
The main result concerns internal regions V that contain no standard points and
have the property that st(V) does not disconnect the plane and are bounded by
simple closed curves that have small intersection with ∗st(V). We show that such
sets cannot contain a “Y-set” consisting of three arcs intersecting only at a single
common point with the property that the non-intersecting endpoints of each arc
are a noninfinitesimal distance from the arc joining the other two ends.
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1 Preliminaries

A continuum is a compact, connected metric space. Here we are concerned solely
with continua in the plane and the nonstandard plane. A good general reference for
Continuum Theory is [15]. A short historical perspective is given in [8].

We work in a nonstandard universe, as described in detail for example in [3],[5],[10],
or [11]. We assume that our universe is i+

1 saturated, as this is needed in some of the
results.

Definition 1.1 If p1 and p2 are points in the nonstandard plane we will write p1 ≈ p2

if they are an infinitesimal distance apart and we will say that p1 is near p2 .

If A is a standard set we will write ∗A for its nonstandard counterpart.

If p is a point in the nonstandard plane that is within some standard distance of the origin
we write st(p) for the unique standard point that is within an infinitesimal distance of
p.

The elements of ∗P(R2) are the internal sets (here we use P(A) to denote the power set
of A). Intuitively these are the subsets of ∗R2 that the nonstandard model recognizes
as sets.
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2 Steven C. Leth

The results in the proposition below are elementary and well-known, but are funda-
mental to this work, so the proofs are included here for convenience.

Proposition 1.2 i) If A is any internal set in the plane then st(A) (the set of all standard
points infinitesimally close to points in A) is closed.

ii) If A is internal, connected and bounded (i.e. contained in some ∗B(0, r) for a
standard real r > 0) in the nonstandard plane then st(A) is connected.

Proof i) If p is a limit point of st(A) then for any standard ε > 0 there must exist
points of A within ε of p. Internally we may let r = infa∈A ‖a− p‖, and r must be
infinitesimal. But then p is a standard point near points in A, so p ∈ st(A).

ii). Suppose that st(A) is not connected, and let U and V be a separation, i.e. suppose
that st(A) ⊂ U ∪ V , both are open, and both have nonempty intersection with st(A).
Let u ∈ U∩st(A) and v ∈ V∩st(A). Then there exists au, av in A such that st(au) = u
and st(av) = v. Since U and V are open, there exists a standard d > 0 such that all
points within d of u are in U and all points within d of v are in V . Thus, by transfer,
au ∈ ∗U , and av ∈ ∗V , and these two sets are open and disjoint. Since A is connected
and both ∗U and ∗V intersect A, there must exist a point x ∈ A that is not contained
in ∗U∪ ∗V. Since A is bounded st(x) exists and since st(x) is an element of st(A), it
is contained in either U or V . As above, however, this means that x is in either ∗U or
∗V , and this contradiction completes the proof.

Most of the definitions needed here are all collected below. The two “Y-set” definitions
do not seem to correspond exactly to other definitions in the literature. They are simple
triods with appropriate “width” properties. The notion of “IL-chainable” is a natural
extension of usual chainability definitions into this nonstandard setting.

Definition 1.3 If A is an arc (either standard or internal) and a1 and a2 are two points
on A then we will write A[a1, a2] for the subarc from a1 to a2 . If S is a simple closed
curve in the plane or the nonstandard plane we will write VS for the bounded region
whose boundary is S (VS exists and is well-defined by the Jordan Curve Theorem).
We will say that a set A ⊂ ∗R2 contains a Y-set if there exist four points a, b, c, and
x in A, arcs Cax ,Cbx , and Ccx in A intersecting only at x , from a to x , b to x , and
c to x , respectively, such that none of the points a,b, or c are within an infinitesimal
of any point on the arcs joining the others to x (thus, for example, no point of Cax
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Regions in the nonstandard plane that contain no standard points 3

is infinitesimally close to b or to c). If δ > 0 we will say that a set A in the plane
contains a size δ Y-set if there exist four points a, b, c, and x in A, and arcs Cax ,Cbx ,
and Ccx in A intersecting only at x from a to x , b to x , and c to x , respectively, such
that none of the points a,b, or c are within δ of any point on the arcs joining the others
to x (thus, for example, no point of Cax is within distance δ of b or c). We will call
an internal subset of the nonstandard plane IL-chainable (for “infinitesimally linearly
chainable”) if it can be covered by a hyperfinite collection of open sets G0, ...,Gn of
infinitesimal diameter with the “linear chain” condition that Gi ∩ Gj is nonempty iff
|i− j| ≤ 1.

A standard set that can be covered by a finite chain of sets Gi as in the above definition
is called δ -chainable if each of the chaining sets are of diameter less than δ . A set is
called chainable if it is δ -chainable for all δ > 0. So, IL-chainable sets are just those
that satisfy the usual definition of being δ -chainable inside the nonstandard model for
some infinitesimal δ > 0.

2 Regions Containing No Standard Points

In this section we exploit the interplay between a set and the internal set obtained by
first taking the standard part and then looking at the nonstandard version of that set.
Of particular importance are regions V that have little intersection with ∗st(V) and that
contain no standard points. It is easy to find simple examples of regions V such that
∗st(V) ∩V is empty. For example if η > 0 is infinitesimal and V is the interior of
the rectangle with corners at (η, 1), (2η, 1), (2η, 0) and (η, 0) then st(V) is simply the
closed line segment on the y axis from (0, 0) to (0, 1). The set ∗st(V) is the nonstandard
counterpart of st(V), so includes nonstandard points on this line segment, including
points within an infinitesimal of the origin, but since the standard universe satisfies the
statement that all the points in st(V) have x coordinate of 0 the nonstandard version of
this set has the same property by the transfer principle. This shows that ∗st(V) ∩V is
empty. The boundary of V does not intersect ∗st(V) at all in this example. However
in the most interesting cases, such as regions obtained by blocking off long portions of
a simple dense canal, there will always be some intersection with ∗st(V), although only
on the small segments used to close off a region. There will always be many points of
∗st(V) in the interior of V , but the crucial additional condition in the theorem below is
that none of them will be actual standard points.
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4 Steven C. Leth

Theorem 2.1 Let V ⊂ ∗R2 be a bounded (internal) region (i.e. contained in some
∗B(0, r) for a standard real r > 0) bounded by a simple closed curve S and suppose
that V contains no standard points, st(V) does not disconnect the plane, and that there
exists an arc A of infinitesimal length on S such that ∗st(V)∩S ⊂ A. Then V contains
no Y-set.

Proof We first note that st(V) has no interior. Since V contains no standard points,
every point of ∗st(V) is near a point of its boundary S . If ∗st(V) were to contain any
ball of noninfinitesimal diameter, then it would intersect S at points that are not all
near each other, which violates the condition that ∗st(V) ∩ S ⊂ A. Thus, st(V) has no
interior by transfer.

Suppose that V contains a Y-set. We let a, b, c and x be points as in the definition of
a Y-set, but we note that there are many possible choices for a, b, and c, and since the
arc A is of infinitesimal length, we may choose these points in such a way that none of
them are near A. We let Y = Cax ∪ Cbx ∪ Ccx .

We next show that there must exist standard disjoint balls Ba,Bb, and Bc satisfying the
following:

i) a ∈ ∗Ba , b ∈ ∗Bb , and c ∈ ∗Bc .

ii) Each of these three balls have non-zero radius (and thus non-infinitesimal radius
since they are standard sets).

iii) The arc A does not intersect Ba,Bb , or Bc .

iv) every point on Ba is not near any point on Cbx or Ccx , every point on Bb is not near
any point on Cax or Ccx , and every point on Bc is not near any point on Cax or Cbx .

v) The interior of each ball contains points not disconnected from infinity by st(V)
together with the closure of the other two balls. For example, the interior of Ba

contains points not disconnected from infinity by st(V) ∪ Bb ∪ Bc .

It is clear from the conditions given that standard balls of sufficiently small radius can
be found that will satisfy the first four properties, and we assume that we begin with a
B0

a,B
0
b, and B0

c satisfying just those. It is possible that, for example, st(V) ∪ B0
b ∪ B0

c
disconnects the plane. However, since st(V) does not disconnect the plane, and no
point of B0

b is near B0
c or any point on Cax or Ccx , a bounded component of the

complement of st(V) ∪ B0
b ∪ B0

c could occur only if a portion of Cbx encloses some
standard open set and then passes back into or within an infinitesimal of B0

b or if a
portion of Ccx encloses some standard open set and then passes back into or within
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Regions in the nonstandard plane that contain no standard points 5

an infinitesimal of B0
c . If B0

a is in such a bounded component (all points in this set
must be in the same component since no point of the boundary intersects B0

a ) we let
pa be a standard point in B0

a − st(V), and Ta be a standard path from pa to infinity in
R2− (st(V)). Such a path exists since R2− (st(V)) is open and connected, and thus
path-connected. This standard path cannot pass near b or c since it stays a standard
nonzero distance away from st(V). Similarly if B0

b is in a bounded component of the
complement of st(V)∪B0

a∪B0
c we let pb be a standard point in B0

b− st(V), and Tb be a
standard path from pa to infinity in R2− (st(V)), and if B0

c is in a bounded component
of the complement of st(V) ∪ B0

a ∪ B0
b we let pc be a standard point in B0

c − st(V),
and Tc be a standard path from pc to infinity in R2− (st(V)). We can now choose
smaller balls Ba,Bb, and Bc inside B0

a,B
0
b, and B0

c such that conditions i) through iv)
are satisfied and none of these intersect Ta , Tb or Tc . This ensures that condition
v) will hold, for points in (R2− (st(V))) ∩ Ba are in the same connected component
of the complement of st(V) ∪ Bb ∪ Bc as pa , points in (R2− (st(V))) ∩ Bb are in the
same connected component of the complement of st(V) ∪ Ba ∪ Bc as pb and points
in (R2− (st(V))) ∩ Bc are in the same connected component of the complement of
st(V) ∪ Ba ∪ Bb as pc .

Having established the existence of the standard balls satisfying conditions i) through
v), we now let a′ be the last point of Cax ∩ Ba on the arc from a to x , and define Ca′x

to be the subarc of Cax from a′ to x . We define b′ , Cb′x , c′ ,Cc′x analogously. We let
Y ′ = Ca′x∪Cb′x∪Cc′x , and we note that Y ′ is path-connected and therefore connected.
By proposition 1 st(Y ′) is connected, and thus ∗st(Y ′) is connected by transfer.

We let qa be a standard point in Ba − st(V) and T ′a be a standard infinite path (ray)
in R2− (st(V) ∪ Bb ∪ Bc) starting at qa and going off to infinity. Similarly we
let qb be a standard point in Bb − st(V) and T ′b be a standard infinite path in R2−
(st(V)∪Bb∪Bc∪T ′a) starting at qb and going off to infinity, and qc be a standard point
in Bc−st(V) and T ′c be a standard infinite path (ray) in R2− (st(V)∪Bb∪Bc∪T ′a∪T ′b)
starting at qc and going off to infinity. Figure 1 illustrates these definitions.

Since st(V) and any bounded portion of T ′a,T
′
b, and T ′c are disjoint compact sets, they

are some non-zero distance apart, so by transfer there are no points of ∗st(V) that are
within an infinitesimal distance of any points of ∗T ′a , ∗T ′b , or ∗T ′c . We note that the
single point st(A) is in st(V), so the arc A is also not within an infinitesimal distance
of any points of ∗Ta , ∗Tb , or ∗Tc .

We now define internal infinite arcs as follows: We let Γa consist of the line segment
from a′ to a nearest point of ∗T ′a ∩ Ba , followed by ∗T ′a from that point to infinity.
There may be more than one “nearest point” and we can choose any of them. This
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6 Steven C. Leth

Figure 1: Illustration of definitions

condition ensures that the initial segment does not intersect ∗T ′a except at this point.
The internal paths Γb and Γc are defined analogously. Since there are no points of
∗st(Y ′) in the interior of Ba ,Bb , and Bc there are no points of ∗st(Y ′) other than a′

that intersect Γa , and similarly the other two arcs only intersect ∗st(Y ′) at their initial
points. Since the arc A does not intersect Ba , Bb , or Bc we also know that A does not
intersect Γa,Γb, or Γc .

The set Γa ∪ Γb ∪ Γc ∪ Y ′ consists of three non-intersecting infinite arcs originating
from the point x , and so divides the nonstandard plane into three regions. One of
these regions, which we will call R1 , is bounded by Γa ∪Ca′x ∪Cb′x ∪ Γb . No point
in this region can be within an infinitesimal distance of c′ , since c′ is not contained
in R1 and is not near any of the points on the boundary. Similarly we let R2 be the
region bounded by Γb ∪Cb′x ∪Cc′x ∪ Γc and R3 be the region bounded by Γc ∪ Cc′x

∪Ca′x ∪ Γa , noting that no point of R2 is near a′ and no point of R3 is near b′ .

We consider connected components of ∗R2− (S∪ Γa∪ Γb∪ Γc)) that contain standard
points (and so are external to V ). These cannot intersect more than one of our three
regions. This is because these connected components are bounded by portions of the
the outside of S together with portions of the Γ curves, and since S does not intersect
Y , a point traveling along S may only move from one of the three regions into another
one by passing through Γa,Γb , or Γc . The arc A of infinitesimal length can be a part
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Regions in the nonstandard plane that contain no standard points 7

of the boundary of only one of these components, since it does not intersect Ba , Bb , or
Bc . Thus, the boundary of all of these components except one is completely contained
in ∗R2− ∗st(Y ′).

No standard points of ∗st(Y ′) can be on any of the boundary points of R1 , R2 , or R3 ,
so all of the standard points of this set are in one of the three regions R1 , R2 , or R3 . We
will assume, wlog, that there is a standard point p1 in R1 . Since p1 is a standard point
it cannot be in V , so from above C(p1,

∗R2 − (S∪ Γa∪ Γb)) must be contained in R1 .
But st(c′) cannot be in R1 since no point in R1 is within an infinitesimal distance of c′ ,
and so wlog we suppose that it is in R2 . By a similar argument, C(st(c′),∗R2 − (S∪
Γb∪ Γc)) is contained in R2 . But from above, at least one of these sets is contained
in a connected component of ∗R2 − (S∪ Γa∪ Γb∪ Γc)) whose boundary lies in the
complement of ∗st(Y ′). This contradicts the connectedness of ∗st(Y ′), finishing the
proof.

It is easy to see that the condition that V contains no standard points is necessary, for
without it we could let Y be the set in the nonstandard plane consisting of the closed
line segments from (0, 1) to (0,−1) and (0, 0) to (1, 0), and let V be the interior of
a simple closed curve that traces around Y , and stays infinitesimally close to it at all
points. Such a V satisfies the other conditions of the proposition (the boundary of V
does not intersect ∗st(V) at all), but certainly contains the Y -set that we surrounded,
as shown in figure 2.

Figure 2: The region must contain no standard points
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8 Steven C. Leth

Similarly we can see that we cannot allow the curve to intersect the standard part on
more than one small arc. If we move the example above up and over by an infinitesimal
distance we can surround it with a simple closed curve containing no standard points
if we allow the curve to have two disjoint arcs of infinitesimal length intersect the
standard part, rather than only one, as in the theorem. In this case the two disjoint arcs
can even be infinitesimally close to each other (though not close as one follows along
the curve). This is illustrated in figure 3.

Figure 3: The region must intersect its standard part only in a small arc

It seems unlikely that the condition that st(V) does not disconnect the plane is necessary
in the main result above, but no easy way to remove this condition in the proof is
apparent. As is discussed more in section 4, the study of planar continua that do not
separate the plane is the fundamental motivation for this work, and in that context this
condition will always hold. Still, it would be nice to know if it can be removed from
the hypotheses in the result above. It would be easy to see that we could remove this
condition if every Y-set whose standard part disconnects the plane contains a Y-set
whose standard part does not disconnect the plane, but there are counterexamples to
this. One such example takes the union of the following three sets: the closed interval
from (−1, 0) to (0, 0), the graph of the function y = x sin(1/x) on (0, 1] and the line
segment from (0, 0) to (1, 1 + ζ) where ζ is infinitesimal.

The theorem below is a standard translation of theorem 2.1.
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Regions in the nonstandard plane that contain no standard points 9

Theorem 2.2 Let E be a non-separating compact set in the plane, and Rn be a sequence
of regions bounded by simple closed curves Sn with the property that for any k and
any finite collection of points in the plane {p1, p2, p3...pk} there exists an n such that
{p1, p2, p3, ..., pk} ∩ Rn = ∅ and E ∩ Sn ⊂ An , where An is an arc of length less than
1/k and all points of Sn are within 1/k of some point in E . Then for all δ > 0 there
exists an n such that Rn contains no size δ Y set.

Proof We suppose that there exists some δ > 0 for which no such n exists. We
consider the collection of mathematical statements “{R is a region with simple closed
curve boundary S, {p1, p2, p3, ..., pk}∩R = ∅, ∗E∩S ⊂ A, where A is an arc of length
less than 1/k,all points of Sn are within 1/k of some point in ∗E,R contains a size
δ Y set}, where {p1, p2, p3, ..., pk} includes every finite subset of points in the plane.
By the hypothesis (and transfer), for any finite subset of this collection there exists an
Sn and Rn that makes all the statements in the finite subcollection true. Thus by i+

1
saturation there exists a single internal region R bounded by an internal simple closed
curve S satisfying all the statements at once, and thus satisfying the conditions of the
theorem. All of the conditions needed to apply theorem 1 now hold except that it is
possible that st(V) (which must be contained in E) disconnects the plane. However,
since E does not, any point disconnected from infinity by st(V) must be in E , and any
point disconnected from infinity and not within an infinitesimal distance of st(V) is in
the interior of E . In the proof of theorem 2.1 we use the fact that points inside the
original balls satisfying the first four conditions are not disconnected from infinity by
st(V), and that must still be the case. Thus, the conclusion of the theorem holds, and
this contradicts the fact that this V contains a size δ Y-set.

This theorem appears to be significantly stronger than what we obtain by replacing
the condition that “E ∩ Sn ⊂ An , where An is an arc of length less than 1/k” with
simply “E ∩ Sn = ∅”. Still this weaker result yields the following standard corollary,
which is similar to the classic result of Moore’s about triods in the plane [13], although
here it is well known from Moore’s work and “folklore” results that the condition
“non-separating” in the corollary below is extraneous.

Corollary 2.3 For every δ > 0 no non-separating compact set in the plane can contain
infinitely many disjoint connected components each of which contains a size δ Y-set.

Proof If such a set E existed then given any m distinct components of E each of which
contains a size δ Y set, we may surround these components with non-intersecting
simple closed curves all of whose interiors are everywhere within 1/m of E but are
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10 Steven C. Leth

such that the boundary curves do not intersect E . If we focus on a fixed countable set
of components of E the collection of all finite subsets is countable, and for each finite
subset we obtain finitely many simple closed curves. The countable collection of all
of these simple closed curves now forms a collection {Rn} that satisfies the conditions
of the theorem above (with each An the empty set). This is because given any finite
collection of k points, any subcollection that covers k + 1 distinct components in the
manner described must include one whose closure contains none of the given points,
and by construction the other conditions are satisfied. But the conclusion of the theorem
contradicts that each of these contains a size δ Y set.

A note on the strength of these standard results: in a comment on an earlier version
of this paper it was pointed out that the corollary above can be derived easily from
results in Moore’s classic book [14]. It is reasonably likely that the theorem above
can be derived from results in that book as well, although probably not as easily,
partly due to the fact that, although the result is natural in a nonstandard setting, it is
somewhat cumbersome when translated into a standard result. The real strength of
the nonstandard result lies not in its standard translation, but in the fact that it allows
us to use saturation arguments to seek situations in which internal regions contain no
standard points, and thus contain no Y-set. This provides a new nonstandard tool that
can be used to approach standard problems in continuum theory.

3 Examples and Extensions

The position of the standard points inside an internal region is subtle. For example we
consider the usual sin(1/x) continuum partially enclosed by an internal simple closed
curve as shown in figure 4. We let p be a point on the curve that is an infinitesimal
distance from the y axis and assume that the simple closed curve is “closed off” by a
line segment in such a way that p is inside the region. The point q is a standard point
on the curve. In this example the standard part of p is outside the curve, whereas the
standard parts of all the points that are more than an infinitesimal distance from the
axis are all inside the curve. This is true regardless of the width of the region - i.e.
even if the distance from the curve to the continuum is a fixed infinitesimal distance.
The next result shows why this must be true, and provides important simple conditions
under which a region will contain no standard points.

Proposition 3.1 Suppose that A is a standard (closed) arc, B is a standard infinite arc,
a and b are two points on ∗A that are an infinitesimal distance apart and ∗B[b, a]∩
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Regions in the nonstandard plane that contain no standard points 11

Figure 4: Standard parts move from inside to outside as we move along the curve

∗A = {a, b}. Let S be a simple closed curve formed by ∗A[b, a] together with
∗B[a, b], and suppose that st(a) /∈ VS. Then VS contains no standard points (we note
that st(a) = st(b)).

Proof Suppose that x is a standard point in the plane contained in VS . Since st(a) /∈ VS

it is not on ∗A[b, a] . If δ > 0 is any noninfinitesimal real number the hypotheses
show that in the nonstandard universe there are portions of B that intersect portions
of A to form these “loops” in arcs not containing st(a) but such that both endpoints
are within δ of st(a). By transfer this is also true in the standard universe, which
means that for every such loop formed in this way there must be similar ones that are
nearer to st(a). Using the transfer principle again we see that this must be true in
the nonstandard universe as well. However no loop formed in this way can be nearer
to st(a) and contain x without intersecting the boundary of VS . Since no two points
on B intersect, and since the loops only intersect ∗A at the two endpoints this is not
possible.

The example illustrated in figure 4 shows the importance of the condition that ∗B[b, a]∩
∗A = {a, b}. The boundary of the region in that example could be a portion of a
standard infinite arc - one that travels back and forth approaching the sine portion of
the curve more closely each time. If A is any standard arc that begins on the y axis and
ends at some point with intersection on the continuum we see that all the conditions
of the proposition could be satisfied except that the portion of the standard infinite arc
in question will always intersect the standard arc in infinitely many places. There are
standard arcs that intersect this portion of the curve at exactly two points, as required
in the conditions of the proposition, and those portions do, in fact, contain standard
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12 Steven C. Leth

points, but in those cases the standard part of the endpoint will be contained in VS. The
proposition shows that regardless of the width of the region, the standard parts must
stay inside until the curve is within an infinitesimal of the y axis - otherwise we could
find a standard arc that intersects the curve at exactly two points and does not contain
the standard point of the intersection. But then, by the proposition above, no standard
points could be contained in the region.

The conclusion of theorem 2.1 cannot be improved from “V contains no Y-set” to “V
is IL-chainable”, at least not without additional assumptions. If a set is δ -chainable
then it is easy to see that it can contain no size δ Y-set, so IL-chainability certainly
implies that the set contains no Y set. Figure 5 provides an example that shows that
the converse is false. If a (the width shown) is infinitesimal and b (the length shown)
is not, we see that this figure contains no Y-set, and it is easy to see that it is not IL
chainable. This example does not yet show that the conditions given in theorem 2.1 are
not strong enough to allow us to conclude IL-chainability, however, as the set shown
does not satisfy those conditions. Any simple closed curve containing a set of this
shape would either contain standard points or would intersect its standard part on more
than a single infinitesimal arc.

Figure 5: Contains no Y set

In order to see that theorem 2.1 cannot be improved to allow us to conclude IL-
chainability we consider Ingram’s construction of a continuum A that has uncountably
many connected components all of positive “span” [7]. Lelek introduced the notion
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Regions in the nonstandard plane that contain no standard points 13

of the span of a metric space in 1964 [9] and proved that chainable continua have span
zero. See, for example, [16] for related definitions and results.

Definition 3.2 Let E be a continuum with metric d , and let C be the set of all
subcontinua C of E × E with the property that π1 (C) = π2(C). The span of E is

supC∈C inf{d(a, b) : (a, b) ∈ C}.

In Ingram’s construction there must exist a δ > 0 such that infinitely many connected
components of A have span greater than δ , and thus cannot be chained with a collection
of mesh less than δ . Using a saturation argument similar to that used in the proof
of theorem 2.2 we can obtain an example of an internal region V surrounded by an
internal simple closed curve S that does not intersect ∗A at all and contains no standard
points but does contain an internal connected component of ∗A that has internal span
greater than δ (and thus cannot be covered by an internal chain of mesh less than δ).
All the hypotheses of the theorem are satisfied, but V is not IL-chainable.

Additional conditions that would allow us to conclude that the region is IL-chainable
would be highly desirable, and could lead to applications to standard questions in-
volving chainability. One simple condition that is sufficient is that st(V) itself be
chainable. Any chain of standard open sets for st(V) would also form a chaining
set for V , so that V could be covered by an internal chaining set of arbitrarily small
non-infinitesimal mesh and thus one of infinitesimal mesh. This condition is not very
useful, and is far from necessary. An internal “canal” could be IL-chainable and have a
standard part that includes a disk simply by winding back and forth and staying within
an infinitesimal distance of the previous pass. Finding other conditions that allow
us to conclude the chainability of V would be highly desirable. Hoehn has recently
shown that there exist non-chainable plane continua that do not have span zero [4], so
it would also be interesting to find additional conditions that guarantee that the region
must have infinitesimal span.

4 Fixed Points

Does every non-separating plane continuum have the fixed point property? This ques-
tion is usually referred to as the plane fixed point problem. An extensive and compre-
hensive overview of results and questions related to the plane fixed point problem can
be found in [2]. One of the motivations for the results in this paper was to try to find
more situations where the classic “dog-chases rabbit” argument (Bing’s terminology)
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works to prove results related to the plane fixed point problem. The idea of this type of
argument is to move from points toward their images in such a way that the images are
“trapped” and chased down by the points until a fixed point is found. The proposition
below provides an example of such an argument in this setting.

Proposition 4.1 Let E be a non-separating plane continuum and f be a continuous
function from E to E . Let D be a connected subset of ∗E and R a connected, open
region containing D, and suppose that the following conditions are satisfied:

i) R is IL-chainable, i.e. R ⊂ ∪n
k=0Gk , with each Gk of infinitesimal diameter and

Gi ∩ Gj nonempty iff |i− j| ≤ 1.

ii) The boundary of R, except perhaps on R ∩ G0 , is contained in the complement of
E , i.e. ∂R− G0 ⊂ ∗R2 − E .

iii) There exists an index j and a point p in D ∩ Gj such that f (p) ∈ D− ∪j
k=0Gk .

Then f has a fixed point.

Proof We first note that conditions i) and ii) imply that for each i, if p ∈ (∗E ∩
∪n

k=i+1Gk)− Gi then C(p, ∗E − Gi) ⊂ ∗E ∩ ∪n
k=i+1Gk . Since p and f (p) are both in

the connected set D contained in R they are in the same connected component of ∗E
in R. Thus, we may assume that D is this connected component of ∗E in R, for if not
we replace D by its connected component and the remainder of the conditions are still
satisfied.

We first show that all points in D ∩ Gj must be mapped into R − ∪j
k=0Gk . If not, let

q ∈ D ∩ Gj such that f (q) /∈ R − ∪j
k=0Gk . Let ε > 0 be an infinitesimal less than

the distance between ∗E ∩ (R − ∪i
k=0Gk ) and any point in ∗E − (R ∩ (∪n

k=iGk)) (for
i = 1, ..., n) (here we use condition ii) to see that such an ε exists). Now we let δ > 0
be the corresponding infinitesimal that exists by the uniform continuity of f . Since D
is compact it can be covered by a (hyper)finite collection of balls of radius δ/2, and
since D is connected there is a sequence of these δ/2 balls such that the first ball in
the sequence contains p, each ball in the sequence intersects the next, and the final ball
contains q. We now note that if any point in any Gi ∩ D is mapped to R − ∪i

k=0Gk ,
then so is every point in Gi ∩ D that is in the same δ/2 ball, since no point can move
far enough to move out of the region, unless it were to move to Gi itself. But no
point in Gi can map into Gi since the diameter is infinitesimal and there are no fixed
points. But for the same reason, any point in an intersecting δ/2 ball must also stay
inside R and move to a higher numbered set (again, using the fact that it cannot map
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into a region of the same index). Now by following the chain to the point q we get a
contradiction.

Thus, every point in D∩Gj must be mapped into R−∪j
k=0Gk . But D∩Gj ∩Gj+1 is

not empty, or else we could disconnect D by using ∪j
k=0Gk and ∪n

k=j+1Gk , so there is
a point in D ∩ Gj+1 that maps into R− ∪j

k=0Gk , and since no point in Gj+1 can map
into a point in Gj+1 there is a point that maps into R − ∪j+1

k=0Gk . Then, reasoning as
above we see that all points in D ∩Gj+1 map into R−∪j+1

k=0Gk , and continuing in this
way we see that for all m > j, all points in D ∩ Gm map into R − ∪m

k=0Gk . Thus all
points in D map into R, but since f (D) is connected, D is a connected component of
∗E in R, and f (p) ∈ D, we must have that f (D) ⊂ D. But from above this means that
for each m, all points in D ∩ Gm map into D − ∪m

k=0Gk . This contradicts that n is
(hyper)finite, completing the proof.

This particular argument does not use infinitesimals in a fundamental way. If E , D
and R are standard in the proposition above and R is δ -chainable then the conditions
allow us to conclude that f has a point that moves a distance less than δ . The condition
that D is connected and that E can only intersect at one end of the chain are critical.
For example in the diagram below the images can “escape” as we move toward f (p) on
the set. Similarly, if the connected component of p does not reach the end of the chain
and is not the same as the connected component of f (p) then we have not necessarily
created a fixed point trap.

Figure 6: This chainable set has not created a fixed point trap

Returning to the example given in figure 5 we consider the property of containing no
Y-sets from the point of view of searching for fixed points. If we imagine this to
be a portion of the nonstandard version of a standard continua that connects only at
the point p to the rest of the set and f is a standard continuous function from E to E
that sends the point p to some other point on the portion shown, then the “dog chases
rabbit” argument works here and f must have a fixed point, but the argument is subtle.
There are internal (but not standard) continuous functions that could “chase” the image
around and let it “escape” without ever getting within an infinitesimal of it, but only if
points that are within an infinitesimal of each other are mapped to points that are far
apart. This set has noninfinitesimal internal span for a similar reason.
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Under what conditions will a region that contains no Y-set form fixed point traps?
Under what additional conditions do sets that satisfy the conditions of theorem 2.1
form fixed point traps? Answers to these questions could provide additional ways to
attack unsolved cases of the plane fixed point problem. One of many possible specific
conjectures along these lines is given below.

Conjecture 4.2 With E and f as in the fixed point problem let D be a connected
subset of ∗E and R a connected open region whose closure contains D and suppose
that the following conditions are satisfied

i) V contains no Y-set.

ii) The boundary of V , except on an arc of infinitesimal length A, is contained in the
complement of ∗E .

iii) There exists p ∈ D ∩ A and balls B of arbitrarily small non-infinitesimal diameter
about p such that

a) C(f (p), ∗E − B) ⊂ V

b) V ∩ B is connected.

c) V ∩ ∂B is an arc of infinitesimal length

Then f has a fixed point.
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