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Abstract: We characterize the compactness properties of the product of λ copies
of the space ω with the discrete topology, dealing in particular with the case λ
singular, using regular and uniform ultrafilters, infinitary languages and nonstan-
dard elements. We also deal with products of uncountable regular cardinals with
the order topology.
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1 Introduction

The problem of determining the compactness properties satisfied by powers of the
countably infinite discrete topological space ω originates from Stone [19], who proved
that ωω1 is not normal, hence, in particular, not Lindelöf. More generally, Mycielski
[18] showed that ωκ is not finally κ-compact, for every infinite cardinal κ strictly less
than the first weakly inaccessible cardinal. Recall that a topological space is said to
be finally κ-compact if any open cover has a subcover of cardinality strictly less than
κ. Lindelöfness is the same as final ω1 -compactness. Previous work on the subject
had been also done by A. Ehrenfeucht, P. Erdős, A. Hajnal and J. Łoś; see [18] for
details. Mycielski’s result cannot be generalized to arbitrarily large cardinals: if κ
is weakly compact then ωκ is indeed finally κ-compact: see Keisler and Tarski [10,
Theorem 4.32]. Related work is due to D. V. Čudnovskiı̆, W. Hanf, D. Monk, D. Scott,
S. Todorčević and S. Ulam, among many others.

With regard to powers of ω a more refined result has been obtained by Mrówka who, eg,
in [17] showed that if the infinitary language Lω1,ω is (κ, κ)-compact then ωκ is finally
κ-compact. This is a stronger result since Boos [3] showed that it is possible that Lω1,ω

is (κ, κ)-compact, even, that Lκ,ω is (κ, κ)-compact, without κ being weakly compact.
Recall that the infinitary language Lκ,ω is like first-order logic, except that one allows
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2 Paolo Lipparini

conjunctions and disjunctions of < κ many formulas. A set Γ of sentences of Lκ,ω is
λ-satisfiable if every Γ′ ⊆ Γ of cardinality < λ is satisfiable. Lκ,ω is (λ, λ)-compact
if every λ-satisfiable set of λ sentences of Lκ,ω is satisfiable. A cardinal κ is weakly
compact if it is strongly inaccessible and Lκ,ω is (κ, κ)-compact. Notice that, by Boos’
result, without the assumption of strong inaccessibility we get non equivalent notions,
in general. Asking only for (κ, κ)-compactness of Lω1,ω gives an even weaker notion,
studied by some authors. See Bell [2]. See the result by A. Mekler stated in Eklof [8,
Theorem 1.6] for another application of compactness of infinitary languages without
the assumption of strong inaccessibility.

We now return to the specific aims of the present note. To the best of our knowledge,
the gap between the results by Mycielski and Mrówka mentioned above had not been
exactly filled until we showed in [16] that Mrówka gives the optimal bound, that is, for
κ regular, ωκ is finally κ-compact if and only if Lω1,ω is (κ, κ)-compact. The aim of
the present note is to show that the result holds also for a singular cardinal κ. More
generally, we provide a similar characterization for those pairs of cardinals λ and κ

such that ωκ is [λ, λ]-compact (Theorem 2.5). Recall that a topological space X is
[λ, λ]-compact if every open cover of X by λ sets has a subcover by less than λ sets.

In order to give the proofs we need to use uniform and regular ultrafilters, as well
as nonstandard elements. In particular, we shall introduce some related principles
which may have independent interest and which, in a sense, measure “how hard it
is” to exclude the uniformity of some ultrafilter, on one hand (Definition 2.3), or to
omit the existence of a nonstandard element in some elementary extension, on the
other hand (Definition 4.1). In Theorem 4.2 we show that, under a natural cardinality
assumption, the two principles turn out to be equivalent. A large part of our methods
work for arbitrary regular cardinals in place of ω ; in particular, at a certain point, we
shall make good use of a notion whose importance has been hinted in Chang [5] and
which we call here being “µ-nonstandard”; in the particular case µ = ω we get back
the classical notion. These techniques allow us to provide a characterization of the
compactness properties of products of (possibly uncountable) regular cardinals with
the order topology (Corollary 3.2). This seems to have some interest since, as far as we
know, all previously known results of this kind have dealt with cardinals endowed with
the discrete topology (of course, the two situations coincide in the case of ω ). More
generally, in Proposition 3.4 we find a condition under which [λ, λ]-compactness of
some product of topological spaces implies [µ, µ]-compactness of at least one factor.

The paper is divided as follows. In Section 2 we establish notations, we introduce
our main principle (λ, λ) 6⇒(µγ)γ∈κ and we state the more general form of our results
about powers of ω . We also make a comparison with the simpler situation described
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in [16], where we considered only the case when λ is regular. Section 3 deals with
topology only; we provide a characterization of the principle (λ, λ) 6⇒(µγ)γ∈κ and we
present some applications to products of cardinals. Only the first part of Section 3
shall be needed in the rest of the paper. In Section 4 we introduce the notion of a µ-
nonstandard element and use it in order to provide a model-theoretical characterization
of (λ, λ)6⇒κµ, the particular case of the above principle when all the µγ ’s are equal to
µ. We then have all the necessary elements to conclude the proof of Theorem 2.5, the
main result on powers of ω .

2 A principle working for singular cardinals

Unexplained notions and notation are standard; see, eg, Chang and Keisler [6], Comfort
and Negrepontis [7] and Jech [9]. Throughout, λ, µ and ν are infinite cardinals, κ is a
(possibly finite) cardinal, α , β and γ are ordinals, X is a topological space and D is an
ultrafilter. A cardinal µ is also considered as a topological space endowed either with
the order topology or with the coarser left order topology. The latter topology consists of
the intervals of the form [0, α) with α ≤ µ. Notice that in some former works we have
called the above topology the initial intervals topology however “left order topology”
appears to be the standard terminology. No separation axioms are assumed throughout.
Products of topological spaces are always assigned the Tychonoff topology. We need to
introduce a finer notion of compactness for infinitary languages. If Σ and Γ are sets of
sentences of Lω1,ω we say that Γ is λ-satisfiable relative to Σ if Σ ∪ Γ′ is satisfiable,
for every Γ′ ⊆ Γ of cardinality < λ. We say that Lω1,ω is κ-(λ, λ)-compact if
Σ ∪ Γ is satisfiable, whenever |Σ| ≤ κ, |Γ| = λ and Γ is λ-satisfiable relative
to Σ. We had formerly introduced the notion of κ-(λ, λ)-compactness (actually, a
three cardinals version) for arbitrary logics, extending notions by H. J. Keisler, J. A.
Makowsky, S. Shelah, A. Tarski, among others. See the book edited by Barwise and
Feferman [1], Caicedo [4] and our [11] for more details and references. If κ ≤ λ then
κ-(λ, λ)-compactness reduces to the classical notion of (λ, λ)-compactness recalled in
the introduction. The main motivation behind the definition of κ-(λ, λ)-compactness
is that sometimes we need to work only in models of some theory Σ; in fact usually
Σ will be a fragment of the theory of some model. Considering only an appropriate
fragment rather than the whole theory gives us the possibility of taking into account
lower values of κ, thus providing much finer theorems. See Section 4. An ultrafilter
D is uniform over µ if it is over µ and every member of D has cardinality µ. If D is
an ultrafilter over some set I and f : I → J is a function, f (D) is the ultrafilter over J
defined by Y ∈ f (D) if and only if f−1(Y) ∈ D.

Journal of Logic & Analysis 6:2 (2014)



4 Paolo Lipparini

The key to our characterization of the compactness properties of ωκ , as well as of
other spaces, is a set theoretical principle which measures how hard it is to transfer
regularity of ultrafilters from some cardinal λ to some cardinal µ. In the particular
case µ = ω it just measures how hard it is to show that certain ultrafilters are countably
incomplete. The principle we shall use here and which allows the possibility of dealing
with singular cardinals is technically involved. As a sort of an introduction to it, we
first recall the relatively simpler principle used in Lipparini [16], which is suitable for
dealing with regular cardinals.

Definition 2.1 We denote by λ6⇒(µγ)γ∈κ the following statement.

(*) For every sequence (fγ)γ∈κ of functions such that fγ : λ→ µγ for γ ∈ κ, there
is some uniform ultrafilter D over λ such that, for no γ ∈ κ, fγ(D) is uniform
over µγ .

We write λ 6⇒κµ when all the µγ ’s in (*) are equal to µ.

The negation of λ 6⇒κµ is denoted by λ⇒κµ. A similar convention applies for
λ⇒(µγ)γ∈κ

Notice that λ 6⇒κω if and only if for every sequence of functions fγ : λ → ω (γ ∈ κ)
there is some uniform ultrafilter D over λ such that for every γ ∈ κ the ultrafilter
fγ(D) over ω is principal (since an ultrafilter over ω is uniform if and only if it is non
principal.)

We notice that a reader interested only in compactness properties of powers of ω can
limit herself or himself to the consideration of the principle λ 6⇒κω , and to the corre-
sponding particular case (λ, λ)6⇒κω of the principle we shall introduce in Definition
2.3.

Notice also the similarity between the condition λ ∈ MMM studied by Mrówka (see, eg,
[17, p. 704]) and the principle λ⇒λω . Indeed, had we changed the first occurrence
of the word “uniform” in (*) in 2.1 to “non principal”, the corresponding definition of
λ⇒λω would have turned exactly equivalent to λ ∈ MMM as defined in [17] (in both cases,
the conditions are equivalent to the existence of λ partitions with suitable properties).
Starting with uniform ultrafilters rather than with non principal ones is the key for
making the principle work in the study of final λ-compactness of ωλ . Moreover, our
definition is more general, since it considers the possibility of having more than λ

functions. This has applications to the study of the compactness properties of ωκ .
Furthermore, by allowing µ > ω in λ6⇒κµ we obtain theorems about compactness of
powers of µ as a topological space with the order topology. In the case when λ is regular
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this has been done in Lipparini [16], where we have proved, among other things, the
following theorem. Recall from the introduction the definition of [λ, λ]-compactness
of a topological space.

Theorem 2.2 If κ ≥ λ and λ is regular, the following statements are equivalent.

(1) ωκ is [λ, λ]-compact.

(2) Lω1,ω is κ-(λ, λ)-compact.

(3) λ 6⇒κω .

If λ is regular, then ωλ is finally λ-compact if and only if Lω1,ω is (λ, λ)-compact.

In order to generalize the above theorem (as well as other results proved in [16]) to the
case when λ is singular we need a variant of the principle introduced in Definition 2.1.
The modified principle deals with regularity of ultrafilters rather than with uniformity.
As usual, [λ]<λ denotes the set of all subsets of λ of cardinality < λ. We say
that an ultrafilter D over [λ]<λ covers λ if {s ∈ [λ]<λ | α ∈ s} ∈ D, for every
α ∈ λ. The above definition is connected with the notion of a (λ, λ)-regular ultrafilter.
Indeed, ultrafilters over [λ]<λ covering λ can be seen as standard witnesses of (λ, λ)-
regularity: an ultrafilter D′ over I is (λ, λ)-regular if there is a function f : I → [λ]<λ

such that f (D′) covers λ. This is one among many possible equivalent definitions of
(λ, λ)-regularity. See Lipparini [13] for more details and for a comprehensive survey
of results about regularity.

Definition 2.3 We denote by (λ, λ) 6⇒(µγ)γ∈κ the following statement.

(**) For every sequence of functions (fγ)γ∈κ such that fγ : [λ]<λ → µγ for γ ∈ κ,
there is some ultrafilter D over [λ]<λ covering λ such that for no γ ∈ κ the
ultrafilter fγ(D) is uniform over µγ .

We write (λ, λ) 6⇒κµ when all the µγ ’s in (**) are equal to µ.

The negation of (λ, λ) 6⇒κµ is denoted by (λ, λ)⇒κµ. A similar convention applies for
(λ, λ)⇒(µγ)γ∈κ

Notice that (λ, λ)6⇒κω if and only if for every sequence of functions fγ : [λ]<λ → ω

(γ ∈ κ) there is an ultrafilter D over [λ]<λ covering λ such that for every γ ∈ κ the
ultrafilter fγ(D) over ω is principal.

Only the particular case (λ, λ) 6⇒κω will be involved in our study of compactness of ωκ .
However, when possible, we shall present the more general forms of our results (see
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6 Paolo Lipparini

Theorem 4.2, or the whole of Section 3) since they appear to have intrinsic interest, and
since proofs essentially use no additional argument. Only the arguments in the proof
of Theorem 2.5 at the end of Section 4 apply only to the special case µ = ω . In the
next proposition we show that the principles introduced in Definitions 2.1 and 2.3 are
equivalent when λ is a regular cardinal. Moreover we show that if κ is a sufficiently
large cardinal, then the principles λ6⇒κµ and (λ, λ) 6⇒κµ admit simple characterizations
independent from κ. Recall that an ultrafilter D over I is µ-decomposable if there
is f : I → µ such that f (D) is uniform over µ. Thus the conclusions in (*) and
(**) of Definitions 2.1 and 2.3, respectively, assert the existence of some D such
that no fγ witnesses the µγ -decomposability of D (no matter whether D is actually
µγ -decomposable or not).

Proposition 2.4 (1) (λ, λ)⇒(µγ)γ∈κ implies cf λ⇒(µγ)γ∈κ

(2) cf λ⇒(µγ)γ∈κ implies λ⇒(µγ)γ∈κ

(3) If λ is regular then λ 6⇒(µγ)γ∈κ if and only if (λ, λ) 6⇒(µγ)γ∈κ

(4) If there is an ultrafilter uniform over λ which is not µ-decomposable then λ 6⇒κµ.
If κ ≥ µλ then the converse holds, too.

(5) If there is a (λ, λ)-regular ultrafilter which is not µ-decomposable then (λ, λ) 6⇒κµ.
If κ ≥ µλ<λ then the converse holds, too.

Proof (1) Fix an increasing sequence (λα)α∈cf λ cofinal in λ. Define g : cf λ →
[λ]<λ by g(α) = λα . If D′ is uniform over cf λ, then g(D′) over [λ]<λ covers λ.
Thus if fγ : [λ]<λ → µγ are functions as given by (λ, λ)⇒(µγ)γ∈κ , then the functions
fγ ◦ g : cf λ→ µγ witness cf λ⇒(µγ)γ∈κ

(2) Define h : λ → cf λ by h(β) = inf{α < λ | β < λα}. If D′ is uniform over λ,
then h(D′) is uniform over cf λ, and we can argue as before.

In other words, we have proved, for a natural extension of our notation, cf λ⇒1(λ, λ),
as well as λ⇒1 cf λ. Clauses (1) and (2) follow from the above relations by an obvious
transitivity property of our double-arrow principles. Compare Lipparini [11, Lemma
0.15(i)] and [14, Proposition 6.5]. Let us remark that in [11] the parameter κ does not
appear explicitly: the notation there parallels the present one when κ is assumed to be
at least as large as all the cardinals involved: see the remark before Theorem 2.5 here.

(3) It is enough to prove the equivalence of the negations of the principles. An
implication follows from (1). For the reverse implication, by the mentioned transitivity
property of the double-arrow relation, it is enough to show (λ, λ)⇒1λ, for λ regular.
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This is witnessed by the function k : [λ]<λ → λ defined by k(x) = sup x , for x ∈ [λ]<λ

(the range of k is contained in λ since λ is regular).

(4) The first statement follows trivially from the definitions. The second statement
follows from the fact that there are µλ functions from λ to µ.

(5) Suppose that there is an ultrafilter D′ which is (λ, λ)-regular and not µ-decomposable.
Say, D′ is over I . Since D′ is (λ, λ)-regular, then, by definition, there is a function
g : I → [λ]<λ such that D = g(D′) is over [λ]<λ and covers λ. It is standard to see
that D is not µ-decomposable, since D′ is not µ-decomposable (see, eg, [13, Proper-
ties 1.1(x)]). Thus (λ, λ)6⇒κµ. For the converse, since there are µλ

<λ
functions from

[λ]<λ to µ, by applying (λ, λ) 6⇒κµ to the family of such functions, we get an ultrafilter
D over [λ]<λ which covers λ and which is not µ-decomposable. Now observe that D
is (λ, λ)-regular, by definition.

Proposition 2.4(4)(5) shows that the principles λ 6⇒κµ and (λ, λ) 6⇒κµ are interesting
only for small values of κ. While in general we obtain a stronger statement when we
increase κ in the above principles, at the points κ = µλ and κ = µλ

<λ
, respectively,

we have already reached the strongest possible notion. The problem of the existence
of ultrafilters as in 2.4(4)(5), for various λ and µ, is connected with difficult set-
theoretical problems involving large cardinals, forcing and pcf-theory, and has been
widely studied, sometimes in equivalent formulations. See Lipparini [13] for more
information. In a couple of papers we have somewhat attempted a study of the more
comprehensive (hence more difficult!) relations λ 6⇒κµ and (λ, λ) 6⇒κµ. See [11] and
some references there. Roughly, while, on one hand, for large κ we get notions related
to measurability, on the other hand, for smaller values of κ we get corresponding
variants of weak compactness, as the present note itself exemplifies.

Remark Notice that in some previous works we had given the definition of, say,
(λ, λ) 6⇒κµ by means of the equivalent condition that we are going to present in Theorem
4.2 below. The equivalence holds only under the assumption κ ≥ sup{λ, µ}. Hence
the notation we have previously used in some places might be not consistent with the
present one (but only when small values of κ are taken into account).

Notice also that, as we mentioned in the proof of Proposition 2.4, we can naturally
extend the present notation in order to consider principles like, say, λ 6⇒κ(µ, µ). The
arguments in the proof of 2.4(1)-(3) show that if µ is a regular cardinal, then λ 6⇒κ(µ, µ)
is equivalent to λ 6⇒κµ. This equivalence should be taken into account when comparing
the present results and terminology with some previous ones.
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8 Paolo Lipparini

Theorem 2.5 If κ ≥ λ then the following statements are equivalent.

(1) ωκ is [λ, λ]-compact.

(2) Lω1,ω is κ-(λ, λ)-compact.

(3) (λ, λ)6⇒κω .

The proof of Theorem 2.5 shall be deferred until the end of Section 4, in order to state
and prove preliminary results.

Corollary 2.6 The following statements are equivalent.

(1) ωλ is finally λ-compact.

(2) Lω1,ω is (λ, λ)-compact.

(3) (λ, λ)6⇒λω .

Proof It is easy to show that a topological space is finally λ-compact if and only if it
is both [λ, λ]-compact and finally λ+ -compact. Notice that ωλ is finally λ+ -compact,
since it has a base of cardinality λ. Hence ωλ is finally λ-compact if and only if it is
[λ, λ]-compact. Thus the corollary is the particular case κ = λ of Theorem 2.5.

By Proposition 2.4(3), if λ is a regular cardinal, then Theorem 2.5 and Corollary 2.6
give essentially the same result as Theorem 2.2.

3 Topological equivalents

If D is an ultrafilter over some set I , a point x ∈ X is said to be a D-limit point
of a sequence (xi)i∈I of elements of X if {i ∈ I | xi ∈ U} ∈ D, for every open
neighborhood U of x . To avoid complex expressions in subscripts, we sometimes
shall denote a sequence (xi)i∈I as 〈xi | i ∈ I〉. The next theorem follows easily from
Caicedo [4, Section 3], which extended, generalized and simplified former results by
A. R. Bernstein, J. Ginsburg and V. Saks, among others. A detailed proof in an even
more general context can be found in Lipparini [15, Theorem 2.3], taking λ = 1 there.
See the last paragraph on [15, p. 2509].

Theorem 3.1 A topological space X is [λ, λ]-compact if and only if for every se-
quence 〈xs | s ∈ [λ]<λ〉 of elements of X there exists some ultrafilter D over [λ]<λ

such that D covers λ and 〈xs | s ∈ [λ]<λ〉 has some D-limit point in X .
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Corollary 3.2 Suppose that (µγ)γ∈κ is a sequence of regular cardinals and that each
µγ is endowed either with the order topology or with the left order topology. Then∏
γ∈κ µγ is [λ, λ]-compact if and only if (λ, λ)6⇒(µγ)γ∈κ

Proof Let X =
∏
γ∈κ µγ and, for γ ∈ κ, let πγ : X → µγ be the natural projection.

A sequence of functions as in the first line of (**) in Definition 2.3 can be naturally
identified with a sequence 〈xs | s ∈ [λ]<λ〉 of elements of X , by posing πγ(xs) = fγ(s).
By Theorem 3.1, X is [λ, λ]-compact if and only if, for every sequence 〈xs | s ∈ [λ]<λ〉
of elements of X , there is an ultrafilter D over [λ]<λ covering λ and such that
〈xs | s ∈ [λ]<λ〉 has a D-limit point in X . Since a sequence in a product has a D-limit
point if and only if each component has a D-limit point, the above condition holds if and
only if, for each γ ∈ κ, 〈πγ(xs) | s ∈ [λ]<λ〉 has a D-limit point in µγ . This happens if
and only if, for each γ ∈ κ, there is δγ ∈ µγ such that {s ∈ [λ]<λ | πγ(xs) < δγ} ∈ D,
no matter whether µγ has the left order or the order topology. Under the mentioned
identification, and since every µγ is regular, this means exactly that each fγ(D) fails
to be uniform over µγ . The assumption that µγ is regular is necessary, since if µγ
is singular, it could happen that fγ(D) concentrates on a set of cardinality < µγ , yet
{fγ(s) | s ∈ [λ]<λ} is unbounded mod D in µγ (thus has no D-limit point in µγ ).

We end the present section by showing that, though we have stated our topological
results in terms of products of cardinals, they can be reformulated in a way that involves
arbitrary products of topological spaces. The remaining part of this section shall not be
used in the rest of the paper; in particular, it will not be used in the proof of Theorem
2.5, so the reader might decide to skip it.

Lemma 3.3 If µ is a regular cardinal and X is a topological space, then X is not
[µ, µ]-compact if and only if there is a continuous surjective function f : X → µ,
where µ is endowed with the left order topology.

Proof One implication is trivial, since µ is not [µ, µ]-compact, µ being a regu-
lar cardinal, and since [µ, µ]-compactness is preserved under continuous surjective
images.

For the reverse implication, it is well-known that if µ is a regular cardinal, then a
topological space X is not [µ, µ]-compact if and only if there is a decreasing sequence
(Cα)α∈µ of nonempty closed subsets of X with empty intersection. See, eg, Lip-
parini [14, Theorem 4.4] for the proof in a more general context. Without loss of
generality, we can assume that C0 = X and that (Cα)α∈µ is strictly decreasing, since µ
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10 Paolo Lipparini

is regular. Define f : X → µ by f (x) = sup{α ∈ µ | x ∈ Cα}. Notice that the range of
f is contained in µ, since the sequence (Cα)α∈µ is decreasing with empty intersection.
Moreover, f is continuous, since f−1([β, µ)) = Cβ , if β ∈ µ is a successor ordinal, and
f−1([β, µ)) =

⋂
α<β Cα , if β ∈ µ is limit; hence the counterimage by f of a closed set

is closed. Since C0 = X and (Cα)α∈µ is strictly decreasing, then f is surjective.

Proposition 3.4 If (µγ)γ∈κ is a sequence of regular cardinals then the following
statements are equivalent.

(1)
∏
γ∈κ µγ is not [λ, λ]-compact, where each µγ is equivalently endowed either

with the order topology or with the left order topology.

(2) (λ, λ)⇒(µγ)γ∈κ
(3) For every set I and every product X =

∏
i∈I Xi of topological spaces, if X is

[λ, λ]-compact, then for every injective function g : κ→ I there is γ ∈ κ such
that Xg(γ) is [µγ , µγ]-compact.

(4) For every product X =
∏
γ∈κ Xγ of topological spaces, if X is [λ, λ]-compact,

then there is γ ∈ κ such that Xγ is [µγ , µγ]-compact.

Proof (1) ⇔ (2) is Corollary 3.2 in contrapositive form.

(3) ⇒ (4) is trivial by taking I = κ and g the identity function.

(4) ⇒ (1) is trivial, observing that µγ is not [µγ , µγ]-compact (with either topology),
since µγ is regular.

To finish the proof we shall prove that if (3) fails then (1) fails. Suppose that (3)
fails, as witnessed by some [λ, λ]-compact X =

∏
i∈I Xi and an injective g : κ → I

such that no Xg(γ) is [µγ , µγ]-compact. By Lemma 3.3 for each γ ∈ κ we have a
continuous surjective function hγ : Xγ → µγ and, by naturality of products and since
g is injective, a continuous surjective h : X →

∏
γ∈κ µγ . Thus if X is [λ, λ]-compact

then so is
∏
γ∈κ µγ , since [λ, λ]-compactness is preserved under surjective continuous

images, hence (1) fails in the case the µγ ’s are assigned the left order topology. This
is enough, since we have already proved that in (1) we can equivalently consider either
topology, since in each case (1) is equivalent to (2).

Notice that, in particular, it follows from Proposition 3.4 that if µ is regular, (λ, λ)⇒κµ
and some product is [λ, λ]-compact, then all but at most < κ factors are [µ, µ]-
compact. In this way we obtain alternative proofs— as well as various strengthenings—
of many of the results we have proved in [12]. Notice also that Proposition 3.4 shows
that the assumption that the spaces under consideration are T1 is unnecessary in
Lipparini [16, Proposition 9].
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4 A further equivalence in terms of nonstandard elements

Definition 4.1 We now need to consider a model A(λ, µ) which contains both a copy
of 〈[λ]<λ,⊆,{α}〉α∈λ and a copy of 〈µ,<, β〉β∈µ , where the {α}’s and the β ’s are
interpreted as constants. Though probably the most elegant way to accomplish this is
by means of a two-sorted model, we do not want to introduce technicalities and simply
assume that A = [λ]<λ∪µ and that [λ]<λ and µ are interpreted, respectively, by unary
predicates U and V . In details, we let A(λ, µ) = 〈A,U,V,⊆, <, {α}, β〉α∈λ,β∈µ ,
where U(s) holds in A(λ, µ) if and only if s ∈ [λ]<λ and V(c) holds in A(λ, µ) if and
only if c ∈ µ. By abuse of notation we shall not distinguish between symbols and their
interpretations. If A is an expansion of A(λ, µ) and B ≡ A (that is, B is elementarily
equivalent to A), we say that b ∈ B covers λ if U(b) and {α} ⊆ b hold in B, for
every α ∈ λ. We say that c ∈ B is µ-nonstandard if V(c) and β < c hold in B, for
every β ∈ µ. Of course, in the case µ = ω , we get the usual notion of a nonstandard
element. Notice that if D is an ultrafilter over [λ]<λ then D covers λ in the ultrafilter
sense (cf. the paragraph immediately before Definition 2.3) if and only if the D-class
[Id]D of the identity on [λ]<λ in the ultrapower

∏
D A(λ, µ) covers λ in the present

sense. Moreover, if µ is regular, then an ultrafilter D over µ is uniform if and only if∏
D A(λ, µ) has a µ-nonstandard element.

Theorem 4.2 If κ ≥ sup{λ, µ} then (λ, λ)6⇒κµ if and only if for every expansion
A of A(λ, µ) with at most κ new symbols (equivalently, symbols and sorts), there is
B ≡ A such that B has an element covering λ but no µ-nonstandard element.

Proof Suppose that (λ, λ) 6⇒κµ and let A be an expansion of A(λ, µ) with at most κ
new symbols and sorts. Without loss of generality we may assume that A has Skolem
functions, since this adds at most κ ≥ sup{λ, µ} new symbols. Enumerate as (fγ)γ∈κ
all the functions from [λ]<λ to µ which are definable in A (repeat occurrences, if
necessary), and let D be the ultrafilter given by (λ, λ) 6⇒κµ. Let C be the ultrapower∏

D A. By the remark before the statement of the theorem, b = [Id]D is an element in C

which covers λ. Let B be the Skolem hull of {b} in C; thus B ≡ C =
∏

D A ≡ A, and
b covers λ in B. If by contradiction B has a µ-nonstandard element c, then there is
some γ ∈ κ such that c = fγ(b), by the definition of B. Thus c = fγ([Id]D) = [fγ]D ,
but, since µ is regular, this implies that fγ(D) is uniform over µ, contradicting the
choice of D.

For the converse, suppose that (fγ)γ∈κ is a sequence of functions from [λ]<λ to µ.
Let A be the expansion of A(λ, µ) obtained by adding the fγ ’s as unary functions.
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Notice that we have no need to introduce new sorts. By assumption, there is B ≡ A

with an element b covering λ but without µ-nonstandard elements. For every formula
ϕ(y) in the vocabulary of A and with exactly one free variable y, let Zϕ = {s ∈
[λ]<λ | ϕ(s) holds in A}. Put E = {Zϕ | ϕ is as above and ϕ(b) holds in B}. E has
trivially the finite intersection property, thus it can be extended to some ultrafilter D
over [λ]<λ . For each α ∈ λ, considering the formula ϕα : {α} ⊆ y, we get that
Zϕα = {s ∈ [λ]<λ | α ∈ s} ∈ E ⊆ D, thus D covers λ. Let γ ∈ κ. Since B has
no µ-nonstandard element, there is β < µ such that fγ(b) < β holds in B. Letting
ϕγ(y) be fγ(y) < β , we get that Zϕγ = {s ∈ [λ]<λ | fγ(s) < β} ∈ E ⊆ D, thus
[0, β) ∈ fγ(D), proving that fγ(D) is not uniform over µ.

Theorem 4.2 explains the reason why we have used a negated implication sign in
the notation (λ, λ) 6⇒κµ. The principle asserts that, modulo possible expansions, the
existence of an element covering λ does not necessarily imply the existence of a µ-
nonstandard element. Similarly, (λ, λ) 6⇒κµ is equivalent to the statement that [λ, λ]-
compactness of a product of κ-many topological spaces does not imply the [µ, µ]-
compactness of some factor. See Proposition 3.4.

Proof of Theorem 2.5 The equivalence of (1) and (3) is the particular case of Corol-
lary 3.2 when all the µγ ’s are equal to ω . Thus, in view of Theorem 4.2, and since
κ ≥ λ, it is enough to prove that (2) is equivalent to the necessary and sufficient
condition given in 4.2 for (λ, λ) 6⇒κω . For the simpler direction, suppose that Lω1,ω is
κ-(λ, λ)-compact and that A is an expansion of A(λ, ω) with at most κ new symbols.
Let Σ be the elementary (first order) theory of A plus an Lω1,ω sentence asserting that
there exists no nonstandard element. Let Γ = {{α} ⊆ b | α ∈ λ}. By applying the
κ-(λ, λ)-compactness of Lω1,ω to the above sets of sentences we get a model B as
requested by the condition in Theorem 4.2.

The reverse direction is a variation on a standard reduction argument. Suppose that
the condition in Theorem 4.2 holds. If A is a many-sorted expansion of the model
A(λ, ω) introduced in Definition 4.1 then, for every B ≡ A such that B has no
nonstandard element, a formula ψ of Lω1,ω of the form

∧
n∈ω ϕn(x̄) is equivalent to

∀y(V(y) ⇒ Rψ(y, x̄)) in some expansion B+ of B with a newly introduced relation
Rψ such that ∀x̄(Rψ(n, x̄)⇔ ϕn(x̄)) holds in B+ , for every n ∈ ω . Here we are using
in an essential way the fact that in a sentence of Lω1,ω we can quantify away only a
finite number of variables, hence we can do with a finitary relation Rψ . Thus, given
Σ and Γ sets of sentences as in the definition of κ-(λ, λ)-compactness, assuming that
we work in models without nonstandard elements, iterating the above procedure for all
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subformulas of the sentences under consideration and working in some appropriately
expanded vocabulary, we may reduce all the relevant satisfaction conditions to the case
in which Σ and Γ are sets of first order sentences. In the situation at hand we need
to add to Σ all the sentences of the form ∀x̄(Rψ(n, x̄) ⇔ ϕn(x̄)) as above, but easy
computations show that we still have |Σ| ≤ κ, since κ ≥ λ. If Γ = {γα | α ∈ λ}
is λ-satisfiable relative to Σ, construct a many-sorted expansion A of A(λ, ω) with a
further new binary relation S such that, for every s ∈ [λ]<λ , {z ∈ A | S(s, z)} models
Σ ∪ {γα | α ∈ s}. This is possible, since Γ is λ-satisfiable relative to Σ. We claim
that if B ≡ A is given by the equivalent condition for (λ, λ) 6⇒κω in Theorem 4.2 and
b ∈ B covers λ, then {z ∈ B | S(b, z)} models Σ ∪ Γ. Indeed, for every α ∈ λ the
sentence ∀w({α} ⊆ w ∧ U(w) ⇒ γS(w,−)

α ) is satisfied in A hence, by elementarity, it
is satisfied in B, too. Here γS(w,−)

α denotes a relativization of γα to S(w,−), that is, a
sentence such that if C is a model, c ∈ C and {z ∈ C | S(c, z)} is itself (the base set
of) a model for the appropriate vocabulary, then γS(c,−)

α is satisfied in C if and only if
γα is satisfied in {z ∈ C | S(c, z)}. Similarly, for every σ ∈ Σ, ∀w(U(w) ⇒ σS(w,−))
is satisfied in A hence it is satisfied in B. This shows that {z ∈ B | S(b, z)} models
Σ ∪ Γ. See the book edited by Barwise and Feferman [1] for further technical details,
in particular about relativization and about dealing with constants. Notice also that in
the above proof we do need the many-sorted (or relativized) version of the condition
in Theorem 4.2, since when κ is large the models witnessing the λ-satisfiability of
Γ relative to Σ might have cardinality exceeding the cardinality of the base set of
A(λ, ω).
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