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On the relation of three theorems of analysis
to the axiom of choice
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Abstract: In what follows, essentially two things will be accomplished. First, it will
be proven that a version of the Arzelà–Ascoli theorem and the Fréchet–Kolmogorov
theorem are equivalent to the axiom of countable choice for subsets of real numbers.
Secondly, some progress is made towards determining the amount of axioms that
have to be added to the Zermelo–Fraenkel system so that the uniform boundedness
principle holds.
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1 Introduction

1.1 Outline

In Subsection 1.2, we briefly describe the greater goal of this paper.

In Section 2, we treat the theorems of Arzelà–Ascoli and Fréchet–Kolmogorov in the
following manner: In Subsection 2.1, we state precisely the theorems which we will
investigate and briefly comment on them, in Subsection 2.2 we prove modified versions
of both theorems that hold without any choice axiom, and using these, in Subsection
2.3 we prove that both theorems under consideration are equivalent to the axiom of
countable choice for subsets of real numbers.

In Section 3, we investigate the uniform boundedness principle as follows: In Subsection
3.1 we state the uniform boundedness principle, clarify how it relates (in ZF) to several
other theorems and state the knowledge regarding its choice-axiomatic strength until this
paper, in Subsection 3.2 we give a new proof of the fact that the uniform boundedness
principle follows from the axiom of countable choice, in Subsection 3.3 we deduce
several choice-like axioms from the uniform boundedness principle, in Subsection 3.4
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2 A F D Fellhauer

we give a weak version of the uniform boundedness principle which is equivalent to the
axiom of countable multiple choice, and in Subsection 3.5 we elaborate on how our
results are incomplete and what seem promising directions for further investigation.

1.2 Context and motivation

Many mathematicians blindly accept the axiom of choice. This may be because it
is a straightforward generalisation of things which hold trivially in the finite to the
infinite. However, history has proven (for instance in the case of summation) that such
generalisations may yield contradictions. Now for the axiom of choice, the situation is
somewhat different because it is logically independent of the Zermelo–Fraenkel system
(or for short: ZF); from this follows that ZF plus the axiom of choice can only lead to
a contradiction if ZF already leads to a contradiction. However, if physical reality is
used as a model for the axioms that are used, the Banach–Tarski paradox doubtlessly
contradicts the preservation of energy and mass (since the amount of energy used in
reassembling an object of a certain sufficient size is surely far lower than the energy
needed for creating an entire object of the same size).

If the axiom of choice is not accepted, an alternative approach may be, instead of proving
theorems for all, say, Banach spaces or rings or whatever object, to only prove these
theorems for classes of spaces which are defined such that certain choice-axiomatic
properties hold for them. For instance, the proof of Theorem 3.2.1 and the ensuing
remark will demonstrate that one may prove the uniform boundedness principle in ZF
for all Banach spaces in which every countable product of open subsets is nonempty.
But it is most certainly sufficient to assume that all countable products of any sets are
nonempty (the axiom of countable choice).

In this context, the aim of this paper is to advance knowledge on exactly how much
choice is needed to hold for a given space so that certain theorems are true.

2 The Arzelà–Ascoli and Fréchet–Kolmogorov theorems

2.1 Introduction

When X is a topological space and Y is a metric space with metric dY , the set of
continuous, bounded functions from X to Y with metric

d(f , g) := sup
x∈X

dY (f (x), g(x)).
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On the relation of three theorems of analysis to the axiom of choice 3

is a metric space which is denoted by C(X,Y). We write C(X) for C(X,R).

There are several closely related results that bear the name ‘Arzelà–Ascoli theorem’ (see
for instance Brezis [6, Theorem 4.25, page 111], Rudin [20, Theorem 7.25, page 158],
Tao [23, Theorem 1.8.23, page 114], or Yosida [25, page 85ff.]); all concern (relative)
compactness in spaces of continuous functions. We shall be concerned with the
following version:

2.1.1 Theorem (Arzelà–Ascoli) Let K ⊂ Rd be compact (bearing the topology on K
that is induced by the Euclidean topology of Rd ) and let F ⊆ C(K). Then the following
two are equivalent:

(1) Every sequence in F contains a convergent subsequence.

(2) F is uniformly bounded and equicontinuous.

We will prove that Theorem 2.1.1 is equivalent to the axiom of countable choice for
subsets of the real numbers. (Note that other versions of the Arzelà–Ascoli theorem
have also been studied with regard to their axiomatic strength, eg in Herrlich [11].)

The Fréchet–Kolmogorov theorem concerns (relative) compactness in certain Lp spaces;
it is contained within several (perhaps most) introductory functional analysis textbooks
(for instance in Brezis [6, Theorem 4.26, page 111] or Yosida [25, page 275]).

2.1.2 Theorem (Fréchet–Kolmogorov) Let 1 ≤ p <∞, let S ⊂ Rd be bounded and
measurable and let F ⊆ Lp(S). Then the following are equivalent:

(1) Every sequence in F contains a convergent subsequence.

(2) F is bounded in Lp(S) and

lim
h→0

sup
f∈F

∫
S
|f (x + h)− f (x)|pdx = 0.

Note that for the integral in the above limit to make sense, f ∈ F is extended to Rd by
being zero outside S .

2.2 Modified versions of both theorems

As a first step of investigating the choice-axiomatic nature of the Arzelà–Ascoli and
Fréchet–Kolmogorov theorems, we establish modified versions of both theorems which
hold true in ZF, without assuming any version of the axiom of choice. Oddly enough,
these modified versions will later be needed in determining the choice-axiomatic strength
of the full theorems of Arzelà–Ascoli and Fréchet–Kolmogorov as given above.
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4 A F D Fellhauer

2.2.1 Theorem (Modified Arzelà–Ascoli theorem) Let X be a compact1 and separable2

metric space with metric dX , let Y be a metric space with metric dY and let F ⊆ C(X).
Then the following two are equivalent:

(1) Every sequence in F contains a convergent subsequence.

(2) Every countable subset of F is pointwise relatively sequentially compact and
equicontinuous.

Proof For (2)⇒ (1), the proof given in Yosida [25, page 85ff.] is essentially sufficient;
note only that

• the Bolzano–Weierstraß theorem may be proven constructively (see for instance
Abbott [1, Theorem 2.5.5, page 64]), and

• when {sn|n ∈ N} is a countable, dense subset of X , then for every ε > 0 there
must automatically exist (a minimal) k(ε) such that

sup
s∈S

inf
1≤j≤k(ε)

d(sj, s) ≤ ε;

this follows by considering the open cover {Bε(sn)|n ∈ N} and applying
compactness.

For (1)⇒ (2), one may consult the proof given in Tao [23, Proof of Theorem 1.8.23,
(i) ⇒ (ii), page 114]; note only that in a separable space, a countable dense subset
{xn|n ∈ N} yields a choice function on the set of all open sets, for one may take the
first xn contained within a given open set.

2.2.2 Theorem (Modified Fréchet–Kolmogorov theorem) Let 1 ≤ p <∞, let S ⊂ Rd

be bounded and measurable and let F ⊆ Lp(S). Then the following are equivalent:

(1) Every sequence in F contains a convergent subsequence.

(2) Every countable G ⊆ F is bounded in Lp(S) and satisfies

lim
h→0

sup
f∈G

∫
S
|f (x + h)− f (x)|pdx = 0.

1By ‘compact’ we mean ‘every open cover has a finite subcover.’ Note that with this definition
the statement ‘A pseudometric space is compact if and only if it is sequentially compact’ is
equivalent to the axiom of countable choice (see Bentley and Herrlich [2, Theorem 4.3,
page 161]).

2Note that the assertion ‘every compact pseudometric space is separable’ is equivalent to the
axiom of countable choice (see Bentley and Herrlich [2, Theorem 4.11, page 164]).
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On the relation of three theorems of analysis to the axiom of choice 5

Note again that f is extended to Rd by being zero outside S .

Proof For (1)⇒ (2), the countability of G makes certain that the argument given in
Yosida [25, page 275ff.] essentially goes through in ZF.

For (2)⇒ (1), we use our modified version of the Arzelà–Ascoli theorem (Theorem
2.2.1). To do so, we assimilate elements of the standard proof given for instance in
Brezis [6, Proof of Theorem 4.26, page 111ff.], but transform the argument to an
argument of more ‘sequential’ flavour. In our argument, we will use the functions ρn

that for n ∈ N are given by

ρn : Rd → R, ρn(x) :=


nde

1
1−‖nx‖2∫

B1(0)
e

1
1−‖y‖2 dy

‖x‖ < 1

0 else.

These functions satisfy ρn ∈ C∞(Rd), supp ρn ⊆ B1/n(0) and
∫

B1/n(0) ρn(x)dx = 1 (see
for instance Brezis [6, page 108]).

Now let (fn)n∈N be a sequence in F . Then G = {fn|n ∈ N} is a countable subset of F .
For n,m ∈ N define

hn,m := fn ∗ ρm.

Then define for m ∈ N
Hm := {hn,m|n ∈ N}.

We claim that for each m ∈ N we have thatHm is uniformly bounded and equicontinuous.
Indeed, uniform boundedness follows from

|hn,m(x)| ≤
∫
Rd
|fn(y)||ρm(x− y)|dy

Hölder’s inequality
≤ ‖fn‖p‖ρm‖p′

where p′ is the Hölder conjugate of p, and similarly equicontinuity follows from∣∣∂xjhn,m(x)
∣∣ ≤ ∫

Rd
|fn(y)||∂xjρm(x− y)|dy

Hölder’s inequality
≤ ‖fn‖p‖∂xjρm‖p′ .

Furthermore, for m, n ∈ N we have supp hn,m ⊆ S + B1(0) and S is bounded, which is
why our modified Arzelà–Ascoli theorem applies to each Hm and also to all subsets of
Hm . Now define a function

k : N× N→ N

by: k(n, 1) is such that (hk(n,1),1)n∈N is the convergent subsequence of H1 as given by
our modified Arzelà–Ascoli theorem, and if k(n,m− 1) is already defined, k(n,m) is
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6 A F D Fellhauer

such that (hk(n,m),m)n∈N is the convergent subsequence of (hk(n,m−1),m)n∈N ⊆ Hm as
given by our modified Arzelà–Ascoli theorem. From this, we define a subsequence
(gn)n∈N of (fn)n∈N by

gn := fk(n,n).

We claim that (gn)n∈N is a Cauchy sequence in Lp(S). Indeed, let ε > 0. If we set

C1 :=
(∫

B1(0)
|ρ1(y)|p′dy

)p/p′

and C2 :=
∫

B1(0)
1dy

we get for all g ∈ G∫
S
|g ∗ ρn(x)− g(x)|pdx =

∫
S

∣∣∣∣∣
∫

B1/n(0)
ρn(y)g(x− y)dy−

∫
B1/n(0)

ρn(y)g(x)dy

∣∣∣∣∣
p

dx

≤
∫

S

(∫
B1(0)
|ρ1(y)||g(x− y/n)− g(x)|dy

)p

dx

Hölder’s inequality
≤ C1

∫
S

∫
B1(0)
|g(x− y/n)− g(x)|pdydx

Fubini’s theorem
= C1

∫
B1(0)

∫
S
|g(x− y/n)− g(x)|pdxdy

≤ C1C2 sup
‖y‖<1

∫
S
|g(x− y/n)− g(x)|pdx

and hence, taking the supremum over g ∈ G of this, first on the right hand side and then
on the left hand side, we get

sup
g∈G

∫
S
|g ∗ ρn(x)− g(x)|pdx ≤ C1C2 sup

g∈G
sup
‖y‖<1

∫
S
|g(x− y/n)− g(x)|pdx.

Therefore, by our assumption on countable subsets of F , we may choose J ∈ N
sufficiently large so that for all g ∈ G

‖g ∗ ρJ − g‖p ≤ ε/3.

Furthermore, by construction, the sequence (hk(J,n),J)n∈N is a Cauchy sequence in
C(S + B1(0)) and hence also in Lp(S), since S is bounded. Hence we may pick M ∈ N
such that for all n,m ≥ M we have

‖hk(n,J),J − hk(m,J),J‖p < ε/3.

Then set N := max{J,M} to obtain for m, n ≥ N that

‖gn − gm‖p ≤ ‖gn − hk(n,n),J‖p + ‖hk(n,n),J − hk(m,m),J‖p + ‖hk(m,m),J − gm‖p

< ε/3 + ε/3 + ε/3 = ε.
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On the relation of three theorems of analysis to the axiom of choice 7

2.3 The relationship to the axiom of choice

We first note that the cardinality of separable metric spaces is always less than or equal to
the cardinality of the real numbers R (every separable metric space is homeomorphic to
a subspace of the Hilbert cube, see for instance Bourbaki [3, Proposition 12, page 156]).
Then we note that for a compact K ⊂ Rd , the space C(K) of continuous, real valued
functions with domain of definition K is separable (this may be proven without
the axiom of choice by approximating any function in such a space by a suitable
multi-dimensional Bernstein polynomial — see for instance Reimer [17, Section 5.2,
page 119ff.] — and then in turn approximating the Bernstein polynomial by a rational
polynomial, where the set of rational polynomials is countable). Further we note
that for any measurable set S ⊆ Rd , the space Lp(S) may be regarded as a subspace
of Lp(Rd) by identifying equivalence classes from Lp(S) with equivalence classes of
Lp(Rd) which are almost everywhere zero on Rd \ S through the obvious bijective
function, which preserves metric. Now the space Lp(Rd) is separable (see for instance
Brezis [6, Theorem 4.13, page 98 ff.]). Thus, we conclude that the cardinality of
both C(K) and Lp(S) are less than or equal to the cardinality of the real numbers R.
Furthermore, the functions R 3 x 7→ x1K ∈ C(K) (K 6= ∅) and R 3 x 7→ [x1S] ∈ Lp(S)
(S ⊆ Rd with nonzero measure, square brackets indicating equivalence class formation)
are injections, which is why the cardinalities of C(K) (K 6= ∅) and Lp(S) (S ⊆ Rd

with nonzero measure) are equal to the cardinality of R by the Schröder–Bernstein
theorem (for the statement and a choiceless proof of the Schröder–Bernstein theorem
see for instance Halmos [9, Chapter 22, page 88 ff.]). With this in mind, we now
explicate the relationship between the axiom of choice and the Arzelà–Ascoli and
Fréchet–Kolmogorov theorems.

Our investigation uses the same method deployed in Rhineghost [18] and is thus based
on the following result proved by Herrlich and Strecker [13, Main Theorem, page 553]:

2.3.1 Theorem The axiom of countable choice for subsets of real numbers is equivalent
to the statement ‘Every unbounded subset of R contains a countable, unbounded subset.’

Furthermore, we use the following result (see for instance Hušek [14, Remark on
page 290]):

2.3.2 Theorem Given a bounded, equicontinuous set of functions F ⊆ C(K) where
K ⊂ Rd is compact, one may extend each function in F to produce a bounded,
equicontinuous set of functions defined on BR(0), where R is such that K ⊆ BR(0).
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8 A F D Fellhauer

2.3.3 Theorem Assume the validity of ZF. Then the Arzelà–Ascoli theorem (Theorem
2.1.1) is true if and only if the axiom of countable choice for subsets of the real numbers
R is true.

Proof We first prove the Arzelà–Ascoli theorem from the axiom of countable choice.
Indeed, (2)⇒ (1) in Theorem 2.1.1 is covered by Theorem 2.2.1. For (1)⇒ (2), we
argue by contradiction: When F is not bounded, we use the axiom of countable choice
for subsets of the real numbers to obtain an unbounded countable set G ⊆ F ; when F
is not equicontinuous, there exists an ε > 0 and an x ∈ K such that

Sn :=
{

f ∈ F
∣∣∃y ∈ B1/n(x) : |f (x)− f (y)| ≥ ε

}
is nonempty for every n > 0, and we apply the axiom of countable choice for subsets
of the reals to get a countable, non-equicontinuous G ⊂ F . In both cases, first we
extend everything to a suitable BR(0) using Theorem 2.3.2 to ensure separability of the
domain of definition of the set of functions, and then apply Theorem 2.2.1 to obtain a
contradiction.

Then we deduce the axiom of countable choice from the Arzelà–Ascoli Theorem 2.1.1.
Indeed, let S ⊆ R be an unbounded subset of R, and set K := BR(0), where R > 0. Set

F := {x 7→ s|s ∈ S} ⊂ C(K),

the constant functions for the elements of S . By the Arzelà–Ascoli theorem, F contains
a sequence which does not have a convergent subsequence, and hence by our modified
Arzelà–Ascoli Theorem 2.2.1, there exists a countable G ⊆ F that is either not bounded
or not equicontinuous. But F is equicontinuous, hence G is unbounded. The theorem
follows from Theorem 2.3.1.

2.3.4 Theorem Assume the validity of ZF. Then the Fréchet–Kolmogorov theorem is
true if and only if the axiom of countable choice for subsets of the real numbers R is
true.

Proof We first prove the Fréchet–Kolmogorov theorem from the axiom of countable
choice for subsets of the real numbers. Indeed, (2)⇒ (1) is covered by Theorem 2.2.2,
and for (1)⇒ (2) we suppose for a contradiction that either F is unbounded or that F
does not satisfy

(a) lim
h→0

sup
f∈F

∫
S
|f (x + h)− f (x)|pdx = 0.

Journal of Logic & Analysis 9:1 (2017)



On the relation of three theorems of analysis to the axiom of choice 9

If F is unbounded, we may pick an unbounded countable subset G ⊆ F (apply
countable choice for subsets of the reals to {f ∈ F|‖f‖p > n}), and if F does not
satisfy equation (a), then there exists ε > 0 such that for all n, the set

Sn :=
{

f ∈ F
∣∣∣∣∃h ∈ B1/n(0) :

∫
S
|f (x + h)− f (x)|pdx > ε

}
is nonempty, and by choosing from these sets we get a countable G ⊆ F that does not
satisfy (a) with f ∈ G . In both cases Theorem 2.2.2 gives a contradiction.

To prove that the axiom of countable choice for subsets of real numbers follows from
the Fréchet–Kolmogorov theorem, we proceed exactly as in the proof of Theorem
2.3.3.

3 The uniform boundedness principle

3.1 Introduction

The uniform boundedness principle may be stated as follows (see for instance Brezis [6,
Theorem 2.2, page 32]):

3.1.1 Theorem (Uniform boundedness principle) Let (X, ‖ · ‖X) be a Banach space,
(Y, ‖ · ‖Y ) a normed space. Let (Tα)α∈A be a family of linear and continuous functions
from X to Y . If

∀x ∈ X : sup
α∈A
‖Tα(x)‖Y <∞,

then
sup
α∈A
‖Tα‖op <∞.

Roughly speaking, this theorem could be described as asserting: ‘If a family of linear
and continuous functions is pointwise bounded, it is also bounded with regard to the
operator norm.’

In what follows, we will prove that the axiom of countable choice implies the uniform
boundedness principle and that several axioms follow from the uniform boundedness
principle. In fact, this will also clarify the choice-axiomatic strength of several other
theorems. This is due to the following:

3.1.2 Theorem The following are equivalent in ZF:

Journal of Logic & Analysis 9:1 (2017)



10 A F D Fellhauer

(1) Every Banach space is barrelled.

(2) Every lower semi-continuous seminorm on a Banach space is continuous.

(3) The uniform boundedness principle holds.

Proof (1)⇔ (2) Schechter [21, 27.32 and 27.33, page 737]

(2)⇒ (3) Bourbaki [5, Theorem 1, page III.25] and Bourbaki [4, Theorem 4, page 362]

(3)⇒ (1) Schechter [21, 27.35, page 738ff.]

3.1.3 Theorem The following are equivalent in ZF:

(1) The closed graph theorem (ie, if X,Y are Banach spaces and T : X → Y is a
linear function such that

graph T := {(x,T(x))|x ∈ X} ⊂ X × Y

is closed, then T is continuous) holds.

(2) A sequential version of the closed graph theorem (ie, if X,Y are Banach spaces
and T : X → Y is a linear function such that

graph T := {(x,T(x))|x ∈ X} ⊂ X × Y

is sequentially closed3, then T is continuous) holds.

(3) The open mapping theorem (ie, whenever X and Y are Banach spaces and
T : X → Y is a linear, continuous and surjective function, then T is open) holds.

Proof (3)⇒ (2) Brezis [6, Theorem 2.9, page 37 and Corollaries 7 and 8, page 35]

(1)⇒ (3) Robertson and Robertson [19, Theorem 3, page 12]4

Further, from Schechter [21, 27.34, page 737ff.] it follows that any of the statements
listed in 3.1.3 implies the statements in 3.1.2.

Our knowledge apart from this article of the relation between the uniform boundedness
principle and the axiom of choice stems from an article by Norbert Brunner [7]. Indeed,
he proved that if every Banach space is barrelled, then the axiom of countable multiple

3Note that the statement ‘In every metric space, a set is closed if and only it is sequentially
closed’ is equivalent to the axiom of countable choice (see [8, Theorem 2.1, page 146]); however,
closed sets are always sequentially closed, and for graphs the equivalence holds in ZF, as the
theorem shows. In particular, for linear functions between Banach spaces, continuity and
sequential continuity are equivalent in ZF.

4Note that when τ : X × Y → X × Y, τ (x, y) := (x, y− Tx), then graph T = τ−1(X × {0}).
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choice (see for instance Herrlich [12, Definition 2.10, page 14] or indeed Axiom 3.3.2)
holds (see Brunner [7, Lemma 4, page 124ff.]). Furthermore, he proved that given ZF
and the axiom of countable finite choice (ie, from a sequence of finite sets one can
extract a sequence of members), the axiom of countable multiple choice suffices to prove
that every Banach space is barrelled (see Brunner [7, proof of Lemma 5, page 125ff.]).

Combining this with Theorem 3.1.2 and the fact that trivially, the axiom of countable
choice implies both the axiom of countable multiple choice and the axiom of countable
finite choice, it follows that

(1) the axiom of countable choice implies the uniform boundedness principle, and

(2) the uniform boundedness principle implies the axiom of countable multiple
choice.

In what follows, we will give new, direct proofs of these two facts, and further deduce
two additional choice-like axioms from the uniform boundedness principle.

3.2 Countable choice implies the uniform boundedness principle

In slightly modifying an argument given by Alan D. Sokal [22], we are able to prove the
uniform boundedness principle using nothing more than the Zermelo–Fraenkel system
and the axiom of countable choice (as noted above, this has been done before).

3.2.1 Theorem Assume the Zermelo–Fraenkel system and the axiom of countable
choice. Then the uniform boundedness principle holds.

Proof Assume for a contradiction that (Tα)α∈A is an unbounded family of linear,
continuous functions from a Banach space (X, ‖ · ‖X) to a Banach space (Y, ‖ · ‖Y ).
Then all the sets

An := {Tα|α ∈ A, ‖Tα‖op > 4n}

are nonempty. Hence, by the axiom of countable choice, we may pick a sequence
(Tn)n∈N such that for each n ∈ N we have Tn ∈ An . By definition of the operator norm,
all the sets

Bn :=
{

x ∈ X
∣∣∣∣‖x‖X ≤ 1, ‖Tn(x)‖Y >

2
3
‖Tn‖op

}
are nonempty. A second application of the axiom of countable choice hence permits us
to choose a sequence (xn)n∈N such that for all n ∈ N, we have xn ∈ Bn .

Journal of Logic & Analysis 9:1 (2017)



12 A F D Fellhauer

Now define a function f : N× X → X by

f (n, x) :=

{
x + 3−(n+1)xn+1

∥∥Tn+1
(
x + 3−(n+1)xn+1

)∥∥
Y > 3−(n+1) 2

3‖Tn+1‖op

x− 3−(n+1)xn+1 else.

We claim that for each n ∈ N there exists exactly one n-tuple (zn,1, . . . , zn,n) such that

(1) zn,1 = x1

(2) zn,k+1 = f (k, zn,k) for k ∈ {1, . . . , n− 1}.

Existence is proved by induction on n; for uniqueness, assume otherwise and use that f
is a function and hence can have only one value. For a given n, we have by induction on
k that zn,k = zn−1,k for k ∈ {1, . . . , n− 1}. Define a sequence (yn)n∈N by yn := zn,n .
We get for n ∈ N

yn+1 = zn+1,n+1 = f (n, zn+1,n) = f (n, zn,n) = f (n, yn).

The sequence (yn)n∈N has two properties:

(1) When k, n ∈ N, we have

‖yn − yn+k‖ ≤
∞∑

j=0

‖yn+j+1 − yn+j‖ ≤
∞∑

j=0

3−(n+j+1) = 3−(n+1) 3
2

= 3−n 1
2
.

(2) For x ∈ X (since the maximum is larger than the average and due to the triangle
inequality)

max
{∥∥Tn(x + 3−nxn)

∥∥ ,∥∥Tn(x− 3−nxn)
∥∥}

≥ 1
2
(∥∥Tn(x + 3−nxn)

∥∥+
∥∥Tn(x− 3−nxn)

∥∥) ≥ 3−n‖Tn(xn)‖ ≥ 3−n 2
3
‖Tn‖op

and hence ‖Tn(yn)‖ ≥ 3−n 2
3‖Tn‖op.

From the first property, (yn)n∈N is a Cauchy sequence, hence convergent to some y ∈ X .
Then for k, n ∈ N

‖yn − y‖ ≤ ‖yn − yk‖+ ‖yk − y‖,

and letting k→∞ proves, together with the first property, that ‖yn − y‖ ≤ 3−n/2.

Combining this with the second property, we get

‖Tn(y)‖ ≥ ‖Tn(yn)‖ − ‖Tn(yn − y)‖ ≥ 3−n 2
3
‖Tn‖op − 3−n 1

2
‖Tn‖op

=
1
6

3−n‖Tn‖op >
1
6

(4/3)n →∞;

that is, (Tα)α∈A is unbounded in y.
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On the relation of three theorems of analysis to the axiom of choice 13

Note that instead of using the axiom of countable choice in selecting the functions
(Tn)n∈N , we could have instead defined the Bn as

Bn :=
{

x ∈ X
∣∣∣∣‖x‖X ≤ 1,∃α ∈ A : ‖Tα(x)‖Y >

2
3
‖Tα‖op >

2
3

4n
}

and only used the axiom of countable choice on the Bn . Then we would have replaced
all the inequalities by inequalities for which there exists a suitable α such that they
hold.

3.3 Axioms implied by the uniform boundedness principle

3.3.1 General proof strategy

Clearly, as became apparent in the proof of the last subsection, the uniform boundedness
principle may be reformulated as follows:

3.3.1 Theorem (Uniform boundedness principle, reformulated) Let (Tα)α∈A be an
unbounded family of linear functions from a Banach space X to a normed space Y .
Then there exists x ∈ X such that {Tα(x)|α ∈ A} ⊆ Y is unbounded.

Hence, we see that given an unbounded family of linear, continuous functions, the
uniform boundedness principle translates into an existence claim, namely the existence
of a point where the respective family of linear, continuous functions is unbounded. If
we therefore are able to associate to such a point subsets of a given family of sets, we
can use an existence result as such to obtain variants of the axiom of choice. In fact,
using the right Banach spaces, this will be possible. The spaces considered in this paper
are created using the following construction:

Assume we are given a countable family of Banach spaces X1,X2, . . . ,Xn, . . .. Then
we may construct from them new Banach spaces in which X1,X2, . . . ,Xn, . . . are
isometrically contained in a canonical fashion. Namely, if 1 ≤ p ≤ ∞, set⊕p

n∈N
Xn :=

{
(xn)n∈N ∈

∏
n∈N

Xn

∣∣∣∣∣‖(xn)n∈N‖p <∞

}
where the norm ‖ · ‖p is given by

‖(xn)n∈N‖p :=


( ∞∑

n=1
‖xn‖p

Xn

)1/p

p <∞

sup
n∈N
‖xn‖Xn p =∞,
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14 A F D Fellhauer

where for each n ‖ · ‖Xn is the norm of Xn . All these spaces are Banach spaces (see for
instance Helemskii [10, page 127]). The space⊕p

n∈N
Xn

is called the `p sum of X1,X2, . . . ,Xn, . . ..

In what follows, we will associate to a sequence of sets (Sn)n∈N spaces (Xn)n∈N . The
choice axioms that we want to deduce from the uniform boundedness principle will
assert that given a sequence (Sn)n∈N , for infinitely many n we can choose sets Mn ⊆ Sn

whose cardinality obeys a certain restriction (for instance is finite or obeys some bound).
In order to execute the deduction, we pick the spaces (Xn)n∈N such that, for a given n,
all elements of Xn having a certain property (for instance, nonzero elements) yield a
set Mn obeying the desired condition; this is the case when the elements of Xn with
the certain property are all sufficiently ‘asymmetric’ in their structure. Then we use
the uniform boundedness principle, applied to a suitable unbounded family of linear,
continuous functions (which will be defined on a suitable `p sum of the (Xn)n∈N ), to
get elements of Xn for infinitely many n which have the certain property that will yield
a suitable Mn .

In our exposition, we will dedicate a subsubsection to each axiom that will be deduced
from the uniform boundedness principle. In each subsubsection, we will start with a
lemma explaining why the elements with the certain property are sufficiently asymmetric
such that subsets of the desired cardinality may be selected.

3.3.2 Choosing finite subsets

We will now present another proof for the fact that the uniform boundedness principle
implies the axiom of countable multiple choice, which is defined as follows (see for
instance [12, Definition 2.10, page 14]):

3.3.2 Axiom (Countable multiple choice) Let (Sn)n∈N be a sequence of sets. Then
there exists a sequence of nonempty sets (Mn)n∈N such that for all n we have Mn ⊆ Sn

and Mn is finite.

We will use the fact that this axiom is equivalent to the following seemingly weaker
axiom:

3.3.3 Axiom (Partial countable multiple choice) Let (Sn)n∈N be a sequence of sets.
Then there exists an infinite I ⊆ N and a family of nonempty sets (Mn)n∈I such that for
all n ∈ I we have Mn ⊆ Sn and Mn is finite.
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On the relation of three theorems of analysis to the axiom of choice 15

The proof of equivalence of the two axioms is essentially the same as the proof of
equivalence of the axiom of partial countable choice to the axiom of countable choice
(see for instance Herrlich [12, Theorem 2.12 3., page 15]) and follows easily from
Keremedis [16, Lemma 1.2, page 570].

Let S be an arbitrary set. P(S), the power set of S , is a σ -algebra, and the counting
measure on S is defined as

µ(E) =

{
#E #E <∞
∞ otherwise,

where E ⊆ S is arbitrary (see for instance Tao [24, Example 1.4.26, page 90ff.]).
L1(S, µ) is a Banach space (see for instance Brezis [6, Theorem 4.8, page 93]).

We note the following lemma regarding L1(S, µ):

3.3.4 Lemma Let (Sα)α∈A be a family of nonempty sets, and let µα be the counting
measure on Sα . There exists a function

Φ(Sα)α∈A :
⋃
α∈A

{
f ∈ L1(Sα, µα)

∣∣∣∣∫
Sα

f (σ)dµα(σ) 6= 0
}
→
⋃
α∈A

{T ⊆ Sα|0 < #T <∞}

such that whenever f ∈ L1(Sα, µα), then Φ(Sα)α∈A(f ) ⊆ Sα .

Proof Let α ∈ A and f ∈ L1(Sα, µα) such that
∫

Sα
f (σ)dµα(σ) 6= 0 be given. We

partition the split real number line R \ {0} into countably many subsets as thus:

R \ {0} =
⋃
n∈Z

([
−2n+1,−2n) ∪ (2n, 2n+1]) .

The following three observations are immediate:

(1) For all n ∈ Z, at most finitely many elements of f (Sα) are in
[
−2n+1,−2n

)
∪(

2n, 2n+1
]
.

(2)
[
−2n+1,−2n

)
∪
(
2n, 2n+1

]
contains a point of f (Sα) only for finitely many

positive n.

(3) R \ {0}, and hence at least one of the sets
[
−2n+1,−2n

)
∪
(
2n, 2n+1

]
, must

contain a point of f (Sα).

Hence, we choose n ∈ Z maximal such that there are some points of f (Sα) in[
−2n+1,−2n

)
∪
(
2n, 2n+1

]
; these are finitely many, and we define Φ(Sα)α∈A(f ) to be

the set of the preimages of these points.
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16 A F D Fellhauer

3.3.5 Theorem Assume that the uniform boundedness principle holds. Then, given a
sequence (Sn)n∈N of nonempty sets, there exists a sequence of sets (Mn)n∈N such that
for all n ∈ N Mn ⊆ Sn and #Mn <∞ and for infinitely many n, Mn 6= ∅.

Proof For each n ∈ N, set Xn := L1(Sn, µn), where µn is the counting measure on Sn .
Then set

X :=
⊕p

n∈N
Xn,

where the choice of 1 ≤ p ≤ ∞ does not matter; we may for instance take p = 1. Set
Y := R, where the norm is given by the absolute value of the reals. For each n define a
linear function Tn : X → Y by

Tn ((xn)n∈N) := 4n
∫

Sn

xn(σ)dµn(σ).

If, for a fixed n, a σ ∈ Sn is picked, and the element x = (xk)k∈N ∈ X defined by the
sequence

xk =

{
0 n 6= k

1{σ} n = k

is considered (where 1A is defined to be the indicator function on the set A), it
becomes evident that ‖Tn‖op ≥ 4n ; that is, the family of linear functions (Tn)n∈N is
uniformly unbounded. Hence, by the uniform boundedness principle, it is also pointwise
unbounded. In particular, we find x = (xn)n∈N ∈ X such that∫

Sn

xn(σ)dµn(σ) 6= 0

for infinitely many n, say for all n ∈ I , where I ⊆ N is infinite. For all such n, we then
define Mn := Φ(Sn)n∈I (xn), where Φ(Sn)n∈I is as in Lemma 3.3.4.

Hence, the uniform boundedness principle implies the axiom of partial countable
multiple choice, and thus the axiom of countable multiple choice.

3.3.3 Choosing subsets of asymptotically bounded cardinality

Now I will deduce from the uniform boundedness principle the following choice axiom:

3.3.6 Axiom (Axiom of partial countable asymptotic choice) Let (Sn)n∈N be a sequence
of finite nonempty sets, and let (λn)n∈N be a sequence of positive real numbers which
is unbounded. Then there exists an infinite set I ⊆ N, a family of sets (Mn)n∈I and a
constant C > 0 such that for all n ∈ I we have Mn ⊆ Sn , Mn 6= ∅ and #Mn ≤ Cλn .
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The deduction of this axiom is based on the following lemma:

3.3.7 Lemma Let S be a finite set, µ the counting measure on S , and f : S → R a
real-valued function on S . If for a C > 0 we have∫

S
|f (σ)|dµ(σ) ≤ C sup

σ∈S
|f (σ)|,

then #
{
σ ∈ S

∣∣|f (σ)| = supσ∈S |f (σ)|
}
≤ C .

Proof Assume otherwise. Then∫
S
|f (σ)|dµ(σ) ≥ #

{
σ ∈ S

∣∣∣∣|f (σ)| = sup
σ∈S
|f (σ)|

}
· sup
σ∈S
|f (σ)| > C sup

σ∈S
|f (σ)|.

3.3.8 Theorem The uniform boundedness principle implies Axiom 3.3.6.

Proof Let (Sn)n∈N be a sequence of finite, nonempty sets, and let (λn)n∈N be an
unbounded sequence of positive, real numbers. Let µn be the counting measure on Sn .
Set Xn := L1(Sn, µn) and Yn := L∞(Sn, µn) and then

X :=
⊕∞

n∈N
Xn and Y :=

⊕p

n∈N
Yn.

The choice of 1 ≤ p ≤ ∞ doesn’t matter, eg p = 1. Define a sequence of linear
functions Tn : X → Y by

Tn ((xk)k∈N) := λn (δnkxk)k∈N ,

where

δnk =

{
1 n = k

0 else

is the Kronecker delta. If, for a fixed n, a σ ∈ Sn is picked, and the element
x = (xk)k∈N ∈ X defined by the sequence

xk =

{
0 n 6= k

1{σ} n = k

is considered, it becomes evident that ‖Tn‖op ≥ λn . It follows that the family
of linear functions (Tn)n∈N is uniformly unbounded, and hence, by the uniform
boundedness principle, pointwise unbounded. Hence pick (xk)k∈N ∈ X such that the
set {‖Tn ((xk)k∈N)‖Y |n ∈ N} is an unbounded subset of the real numbers. In particular,
there exists an infinite set I ⊆ N such that for all n ∈ I we have

1 ≤ ‖Tn ((xk)k∈N)‖Y = λn ‖(δnkxk)k∈N‖Y = λn max
σ∈Sn
|xn(σ)|.
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But since (xk)k∈N ∈ X , there exists a C > 0 such that

∀n ∈ N : C ≥ ‖xn‖Xn =

∫
Sn

|xn(σ)|dµn(σ).

Hence, for all n ∈ I we have∫
Sn

|xn(σ)|dµn(σ) ≤ C ≤ Cλn max
σ∈Sn
|xn(σ)|.

By Lemma 3.3.7, by defining Mn :=
{
σ ∈ Sn | |xn(σ)| = supσ∈Sn

|xn(σ)|
}

for all n ∈ I
we get a family of sets as required by Axiom 3.3.6.

3.3.4 Choosing singletons

3.3.9 Axiom (Axiom of countable choice for sets of bounded, finite cardinality) The
axiom of countable choice for sets of bounded, finite cardinality shall mean the following:
If n ∈ N and (Sk)k∈N is a sequence of nonempty sets such that ∀k ∈ N : #Sk ≤ n, then∏

k∈N
Sk 6= 0.

3.3.10 Definition Let S be a set of finite cardinality, say #S = n ∈ N. Then define

US := {(xσ)σ∈S | ∀σ ∈ S : xσ ∈ R}
VS := {t(1)σ∈S|t ∈ R}
WS := US/VS

Trivially, the following holds:

3.3.11 Lemma Let S be a set of finite cardinality and w = (xσ)σ∈S + VS ∈ WS such
that w 6= 0. Then the set {

σ ∈ S | xσ 6= min
ρ∈S

xρ

}
is independent of the representative of w and a nonempty, proper subset of S .

3.3.12 Theorem Assume that the uniform boundedness principle is true. Then Axiom
3.3.9 holds.

Proof Let a family of nonempty sets (Sk)k∈N be given such that for all k we have
#Sk ≤ n. For each k , we form the spaces USk and WSk as given in Definition 3.3.10.
These are finite-dimensional real vector spaces and hence may be normed to obtain
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Banach spaces. We set Xk to be the Banach space that results from norming USk , and
Yk the Banach space that results from norming WSk . Then we define spaces

X :=
⊕p

n∈N
Xn, Y :=

⊕q

n∈N
Yn

(where the choice of 1 ≤ p, q ≤ ∞ doesn’t matter; we may as well take p = q = 1)
and linear functions Tk : X → Y by

Tk ((xm)m∈N) := 4k (δk,mπWSm
(xm)

)
m∈N ,

where
πWSm

: USm → WSm

are the canonical projections. Once more, considering the element x = (xm)m∈N ∈ X
defined by the sequence

xm =

{
0 k 6= m

1{σ} k = m

yields that the family of linear functions (Tk)k∈N is unbounded, an we take the uniform
boundedness principle to get a point (xm)m∈N such that

πWSm
(xm) 6= 0 infinitely often.

By Lemma 3.3.11 this gives an infinite I ⊆ N and a family (Mn)n∈I of nonempty
sets such that for all n we have Mn ( Sn . Repeating this process n times yields the
theorem.

3.4 The uniform boundedness principle for real-valued functions

There is a weak form of the uniform boundedness principle that is equivalent (in the
Zermelo–Fraenkel system) to the axiom of countable multiple choice:

3.4.1 Theorem (Weak form of the uniform boundedness principle) Let X be a Banach
space, and let (Tn)n∈N be a sequence of linear and continuous functions from X to R
such that for all x ∈ X , the set

{Tk(x) | k ∈ N}

is a bounded subset of R. Then

sup
k∈N
‖Tk‖op <∞.
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3.4.2 Theorem Assuming the Zermelo–Fraenkel system, but not any choice, Theorem
3.4.1 is equivalent to the axiom of countable multiple choice.

Proof For sufficiency, we note that the proof of Theorem 3.3.5 goes through without
modification. For necessity, note that in our situation, we may modify the proof of
Theorem 3.2.1 as follows so that only countable multiple choice is needed:

(1) The first use of the axiom of countable choice is avoided by taking the first
element of the sequence (Tk)k∈N which obeys the desired bound.

(2) The axiom of countable multiple choice is applied to get a finite subset Mn ⊂ Bn

(Bn as in the proof of Theorem 3.2.1) for each n, and if we set

xn :=
1

#Mn

∑
x∈Mn

x,

then ‖xn‖ ≤ 1 and Tn(xn) > 2
3‖Tn‖op .

3.5 Outlook

We have derived several choice-like axioms from the uniform boundedness principle.
We believe that in conjunction, they are not strong enough to prove the axiom of
countable choice, in particular in view of the fact that even if for each n ∈ N and each
family (Sα)α∈A of sets of cardinality n∏

α∈A

Sα 6= 0,

the axiom of finite choice AC(fin) (see for instance Herrlich [15, Definition 2.6, page 14])
does not follow (see for instance Jech [15, Theorem 7.11, page 107]). We have been
unable to deduce the axiom of countable choice from the uniform boundedness principle,
but there are several lines of attack that seem promising:

(1) The use of a modified form of ultraproducts.

(2) The use of different characterisations of the uniform boundedness principle (for
instance, as mentioned it is equivalent in ZF to the statement that all Banach
spaces are barrelled).

(3) Using the fact that Y merely needs to be a normed space.

Now the gap between what we proved and the axiom of countable choice is less huge
than one would perhaps suspect; many choice axioms that we deduced from the uniform
boundedness principle are of the ‘partial type’, but since partial countable choice
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is equivalent to countable choice, it would suffice to prove that from a sequence of
nonempty sets (Sn)n∈N that has arbitrary asymptotic behaviour, one can pick a sequence
of subsets (Mn)n∈N such that for infinitely many n we have #Mn < C for a C > 0 and
Mn 6= ∅.
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