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Representation of unlimited integers as the product of
integers with some constraints
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Abstract: We say that two unlimited natural numbers x and y have the same order
if x/y is appreciable. As a continuation of our previous papers [4, 5], we study the
representation of unlimited natural numbers as the sum of a limited integer and the
product of at least two unlimited natural numbers ω1 , ω2 that satisfy additional
requirements, such that ω1 and ω2 have the same order, gcd(ω1, ω2) = 1, or both.
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1 Introduction

Several representations of natural numbers have been studied for a long time in Number
Theory. For example, representing integers in different bases, representing integers as
the sum of a fixed number of squares or more generally as the quadratic progressions,
etc (see, for example, Johnson [24], Grosswald [18], and Nathanson [28]). Ramanujan
[32] studied the number of representations of n as a sum of k squares or the number of
representations of n as a sum of k triangular numbers.

Throughout this work, 2 = p1 < p2 < ... < pn < ... will denote the successive prime
numbers. The sequence q1 < q2 < ... < qn < ... denotes an arbitrary sequence of
primes. The fundamental theorem of arithmetic states that any natural number that is
greater than 1 can be factored into a product of prime numbers. That is, any natural
number n ≥ 2 can be represented as n = qα1

1 qα2
2 · · · q

αk
k , where 2 ≤ q1 < q2 < · · · < qk

are distinct primes and α1, α2, ..., αk are positive integers. Also, there are several
patterns representing each natural number, some of which give a representation of some
families of integers in infinitely many ways. We mention the most famous of them.
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• The representation of prime numbers by the binary quadratic forms x2 + y2 and
x2 + 2y2 . For more details, see Buchmann and Vollmer [9], Nathanson [28,
Section 13.2, page 404]. On the other hand, suppose that q | (n2 + 2) for some
n ∈ N relatively prime to q. By Mollin [27, page 46-47], there exist unique
x, y ∈ N such that q = x2 + 2y2 . In addition, if q | (n2 − 2) for some n ∈ N
relatively prime to q, then actually one can prove that q can be represented in
the form x2 − 2y2 in infinitely many ways.

• For every m, every even number can be represented in infinitely many ways as a
difference of positive integers relatively prime with m (see, eg, Sierpinski [35,
page 4, Problem 49]).

• In [2, page 163], Erdös and Suranyi proved that every integer n can be represented
in infinitely many ways in the form n = ±12 ± 22 ± ...± m2 for some positive
integer m and some choice of signs + or −.

• The m-adic representation of n (see Nathanson [28, Theorem 1.2, page 5]).
• In view of Andrica and Andreescu [3, page 395], every positive integer n has the

unique factorial base expansion:

n = 1! · f1 + 2! · f2 + ...+ m! · fm,
where each fi is an integer, 0 ≤ fi ≤ i, and fm > 0.

• In Zeckendorf [37], it is proved that every positive integer is a sum of distinct
terms of Fibonacci sequence.

Factoring a composite integer is believed to be a hard problem. Factoring a positive
integer n means finding positive integers u and v such that the product of u and v
equals n, and such that both u and v are greater than 1. Such u and v are called factors
(or divisors) of n, and n = u · v is called a factorization of n. Recall that the problem
of finding factors of a number n = 2k + 1 is solved if we can express n as x2 − y2 in a
nontrivial way (by trivial we mean 2k + 1 = (k + 1)2 − k2 ).

Leibniz, Euler and Cauchy were among the first to use infinitely small quantities. In
order to make better use of this idea, In 1961 Robinson presented another approach,
namely, non-standard analysis. In 1977, Nelson provided another presentation of non-
standard analysis, called IST (Internal Set Theory), based on ZFC and to which a new
unary predicate called standard was added. The use of this predicate is governed by the
following three axioms: Transfer principle, Idealization principle and Standardization
principle. This is the framework within which we present this work. For details, see
Diener [13, pages 1-19], Diener and Reeb [14, pages 7–33], Nilson [29] and Robinson
[34].

Now, assume that n = qα1
1 qα2

2 ...qαr
r is an unlimited positive integer. We cannot generally

deduce that n can be written in the form ω1ω2 , where ω1, ω2 are formed using some of
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the prime powers qα1
1 , qα2

2 , ..., qαr
r with ω1/ω2 appreciable, even when r is unlimited.

So we cannot easily deduce from the fundamental theorem of arithmetic that n can be
written as the sum of a limited integer and the product of at least two unlimited natural
numbers having the same order. In addition, we cannot generally deduce from this
theorem that any unlimited natural number n can be written as the sum of a nonzero
limited integer and the product of pairwise relatively prime unlimited integers, especially
for the numbers of the form s · q, where s ≥ 1 is limited and q is a prime number,
and the numbers of the form p1p2...pn , where n is unlimited and pi is the i-th prime
number. This raises the following natural question: Can every unlimited natural number
n be represented in the form n = s + ω1ω2 , where s ∈ Z is limited and ω1, ω2 ∈ N are
unlimited and satisfy at least one of the following conditions: (i) gcd(ω1, ω2) = 1 and
(ii) ω1/ω2 is appreciable?

Our purpose in this paper is to characterize some families of unlimited natural numbers
which can be written in the form n = s + ω1ω2 where s ∈ Z is limited and ω1, ω2 ∈ N
are unlimited with gcd(ω1, ω2) = 1 or ω1/ω2 appreciable. We present further some
examples that satisfy the two conditions. Thus, we need the following definition:

Definition 1.1 Two real numbers x and y are of the same order, written x ∼ y, if x/y
is appreciable. Or, equivalently, there exist standard real numbers r1, r2 ∈ R+ such that
r1 < |x/y| < r2 .

In our paper [5], we considered the following representation form:

(F2) n = s + ω1ω2,

where s ∈ Z is limited and ω1, ω2 ∈ N are unlimited. In fact, we proved that there
are several types of integers satisfying (F2); but unfortunately, we could not give a
representation of every unlimited positive integer as in (F2). In the same context, a great
contribution to this representation was made by Hrbáček [21], who proved a remarkable
result: Assuming Dickson’s Conjecture, there are unlimited primes that fail to satisfy
(F2).

Throughout this paper, we look at a similar representation by adding some conditions,
such as ω1 ∼ ω2 and gcd(ω1, ω2) = 1. In other words, the main goal of the present
paper is to characterize some families of unlimited natural numbers which can be written
as n = s +ω1ω2 , where s ∈ Z is limited and ω1, ω2 satisfy one of the above conditions.
Symbolically: Let us consider the following form:

(A2)

{
n = s + ω1ω2

ω1 ∼ ω2
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where s ∈ Z is limited and ω1, ω2 ∈ N are unlimited with ω1/ω2 appreciable.

We give two typical examples:

Example 1.2 Let ω be unlimited. We see that

(1) 1 + 10ω =


2 +

(
10

ω
2 − 1

)(
10

ω
2 + 1

)
if ω is even,

11 + 10
(

10
ω−1

2 − 1
)(

10
ω−1

2 + 1
)
, otherwise.

Example 1.3 Let l ≥ 11 be a limited positive integer and let ω be an unlimited positive
integer. It is clear that n = 10ω − l is of the form s + ω1ω2 , where s ∈ Z∗− is limited
and ω1, ω2 are two unlimited positive integers with ω1 ∼ ω2 . Then we can prove that n
in the form s + ω1ω2 , where s ∈ Z∗+ is limited and ω1, ω2 are two unlimited positive
integers with ω1/ω2 appreciable. In fact, fix a limited k so that l < 10k . We see that
n = 10k(10ω−k − 1) + 10k − l, and the result follows by the explicit factoring of the
latter similarly as in (1).

Similar to the work of Hrbáček [21], by assuming Dickson’s Conjecture, we will prove
in Theorem 3.2 that there are infinitely many unlimited integers of the form (F2) which
fail to satisfy (A2). If ω1, ω2 are relatively prime, then (F2) becomes:

(R2)

{
n = s + ω1ω2

gcd(ω1, ω2) = 1.

If ω1, ω2 are both relatively prime and have the same order, then (F2) becomes:

(AR2)


n = s + ω1ω2

ω1 ∼ ω2

gcd(ω1, ω2) = 1.

Example 1.4 Let a = 2x · 5y , where x, y ≥ 0 are limited, and let ω be unlimited.
Then a

∑ω
i=0 10ω−i is of the form s + ω1ω2 where s ∈ N is limited and ω1, ω2 ∈ N

are unlimited with ω1 ∼ ω2 and gcd(ω1, ω2) = 1. We see that

a
ω∑

i=0

10ω−i = a
(

10ω+1 − 1
9

)
=


a +

10a(10
ω
2 − 1)

9
(10

ω
2 + 1) if ω is even,

a(10
ω+1

2 − 1)
9

(10
ω+1

2 + 1), otherwise.

When ω is even we let s = a, ω1 = 10a(10
ω
2 − 1)/9 and ω2 = 10

ω
2 + 1. When ω is

odd we let s = 0, ω1 = a(10
ω+1

2 −1)/9 and ω2 = 10
ω+1

2 + 1. Clearly, gcd(ω1, ω2) = 1
since 2, 5 - (10t + 1) for t ≥ 1.
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In the rest of this paper the letter k always stands for a limited integer > 0. Now, for
every limited k ≥ 2 we consider the general form of (A2):

(Ak)

{
n = s + ω1ω2...ωk

ω1 ∼ ω2 ∼ ... ∼ ωk , k ≥ 2

where s ∈ Z is limited and the positive integers ω1, ω2, ..., ωk ∈ N are unlimited with
ωi/ωj appreciable for 1 ≤ i, j ≤ k . This implies that ωi ∼ k

√
n for i = 1, 2, ..., k . If in

addition these positive integers are pairwise relatively prime1 , then (Ak) becomes:

(ARk)


n = s + ω1ω2...ωk

ω1 ∼ ω2 ∼ ... ∼ ωk

gcd(ωi, ωj) = 1, for i 6= j.

So in this paper we are interested in unlimited positive integers that can be represented as
in (A2), (Ak) and (ARk). Several types of integers satisfy one of the above forms, such
as integer-valued polynomials whose leading coefficients are positive, Femat numbers,
Merssene numbers, Cullen numbers and special numbers defined by recursive patterns
such as Fibonacci numbers and their companion Lucas numbers.

Note that if q is an unlimited prime number we will prove that there exists a positive
integer λ for which λ · q is of the form s + ω1ω2 where s ∈ Z∗ is limited and
ω1, ω2 ∈ N are unlimited with gcd(ω1, ω2) = 1 and ω1 ∼ ω2 (see Proposition 8.3
with λ = ω = q and b = 0). A natural question, which remains open: Does there
exist an unlimited prime number of the form s + ω1ω2 where s ∈ Z∗ is limited and
ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 . The answer is positive by assuming one of
the conjectures: Bouniakowsky conjecture [8] or the n2 + 1 conjecture [36] and many
others. Moreover, we show in Section 11 that the answer to this question cannot be
deduced from Dirichlet’s Theorem on primes in arithmetic progressions (see Nathanson
[28, page 347]). Using this theorem, we will prove (see Proposition 11.1) that there are
unlimited prime numbers of the form (R2).

For further research, we close this paper with a list of open questions which have arisen
during our study.

1A representation of an unlimited positive integer n of the form n = s + ω1ω2...ωk is said to
be "primitive" if ω1, ..., ωk ∈ N are unlimited with gcd(ωi, ωj, ) = 1 for i 6= j. This is similar
to the representation stated in Mollin [27, Definition 6.1, page 247].
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2 Representation of unlimited integers using the division al-
gorithm

In Nathanson [28, page 404], it is shown that for every positive integer n the diophantine
equation n = ω1ω2 + ω2

3 has infinitely many solutions in integers ω1, ω2, ω3 . In the
following theorem we get a similar representation of any unlimited positive integer.

Theorem 2.1 Every unlimited positive integer n can be represented as

n = ω1 + ω2 + ω3ω4,

where ω1 , ω2 , ω3 and ω4 are unlimited positive integers with ωi ∼ ωj for i 6= j.

Proof Let a =
[√

n
]

which is unlimited. Then by the division algorithm, there exist
unique integers q and r such that n = a · q + r with 0 ≤ r < a. In this case, we see
that a ∼ q. In fact, since a ∼

√
n and (

√
n/a)2 = q/a + r/a2 , we conclude that q/a is

appreciable. Therefore, we have:

n = a · q + r = (a− 2 + 2)q + r = q + (q + r) + (a− 2)q.

We put ω1 = q, ω2 = q + r , ω3 = a− 2 and ω4 = q. Then ωi ∼ ωj for i 6= j, and the
proof is finished.

Remark 2.2 We deduce from Theorem 2.1 that every unlimited positive integer n can
be represented as n = s + ω1 + ω2 + ω3ω4 where s ∈ Z∗ is limited and ωi ∈ N are
unlimited with ωi ∼ ωj for i 6= j.

Proposition 2.3 Given any unlimited positive integer n, there exists an integer-valued
polynomial p(x) of degree 2 with limited leading coefficient and an unlimited positive
integer m such that n = p(m). Moreover, n can be represented in one of the following
two forms:

I. n = ω1 + ω2ω3 where ω1, ω2, ω3 ∈ N are unlimited with ω1 < ω2 ≤ ω3 and
ω2 ∼ ω3 .

II. n = s + ω1ω2 where s ∈ N is limited and ω1, ω2 ∈ N are unlimited with
ω1 ∼ ω2 .

Proof Let m =
[√

n
]
, where [x] denotes the integer part of x . By writing n in basis

m, we obtain

(2) n = a0 + a1m + a2m2 + ...+ akmk,
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where k is the nonnegative integer such that mk ≤ n < mk+1 and a0, a1, ..., ak are
integers such that 1 ≤ ak ≤ m− 1 and 0 ≤ ai ≤ m− 1 for i = 0, 1, ..., k − 1. Since
m =

[√
n
]

is unlimited and
√

n − 1 < m ≤
√

n, we conclude that m2 ≤ n < m3 .
Therefore, k = 2. It follows from (2) that n = a0 + m(a1 + a2m) where a2 is limited;
otherwise,

1 =
a0

n
+

a1m
n

+ a2

(
m√

n
· m√

n

)
∼=∞

which is a contradiction. Now, we distinguish two cases:

Case 1. Assume that a0 is unlimited. We put ω1 = a0 , ω2 = m and ω3 = a1 + a2m.
Since 0 ≤ ai ≤ m− 1 for i = 0, 1 and a2 ∈ N∗ is limited, we have ω1, ω2, ω3 ∈ N are
unlimited with ω1 < ω2 ≤ ω3 and ω2 ∼ ω3 . Then n is in form I.

Case 2. Assum e that a0 is limited. Here we put s = a0 , ω1 = m and ω2 = a1 + a2m.
Therefore, ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 . Then n is in form II.

This completes the proof.

3 On the numbers of the form (F2) which are not of the form
(A2)

In this section, we will use the following Dickson’s Conjecture (see Dickson [11]) to
prove that there are infinitely many unlimited numbers of the form (F2), but not of
the form (A2). In fact, this result is similar to the main theorem of Hrbáček [21] and
Boudaoud [6].

By generalizing Dirichlet’s theorem (see Nathanson [28, Theorem 10.9, page 347]) and
concerning the simultaneous values of several linear polynomials, Dickson [11] stated
the following conjecture in 1904:

Conjecture 3.1 (Dickson’s conjecture) Let k ≥ 1 and fi(x) = ai + bi · x with ai and
bi integers, bi ≥ 1 (for i = 1, ..., k). Assume that there exists no integer > 1 dividing
the products f1(n)f2(n)...fk(n) for all positive integers n. Then there exist infinitely
many positive integers m such that all the numbers f1(m), f2(m), ..., fs(m) are primes.

Recall that Dickson’s conjecture implies many important results (see Ribenboim [33])
such as: there exist infinitely many Sophie Germain primes or safe primes2 from which

2Recall that a prime number p is a Sophie Germain prime if 2p + 1 is also prime (see Dubner
[12]). The number 2p + 1 associated with a Sophie Germain prime is called a safe prime.

Journal of Logic & Analysis 17:7 (2025)



8 Bellaouar Djamel and Boudaoud Abdelmadjid

we can say that there are infinitely many primes of the form 1 + 2q, where q ∼= +∞ is
prime.

Theorem 3.2 Assuming Dickson’s conjecture, there exist infinitely many unlimited
integers of the form (F2), none of which can be written as in (A2).

For the proof we need the following facts: For any positive integer n, there are at least
n consecutive composite integers. Also by Bertrand’s theorem we have pn < 2n for all
n ≥ 2 where pn is the n-th prime number.

Proof of Theorem 3.2 We use the fact that there exists an unlimited prime number
pγ such that pγ+1 − pγ ∼= +∞, where γ ∈ N is also unlimited. Let ω be an unlimited
positive integer such that ω/γ is unlimited. Let us construct the following system of
polynomials:

(3)

{
Pα1α2...αγ−1(x) = pα1

1 pα2
2 ...pαγ−1

γ−1 pγpγ+1...pω · x + 1

Ppγ (x) = pγ1 pγ2 ...p
γ
γ−1pγ+1...pω · x + pγ

where (α1, α2, ..., αγ−1) runs the set L = {0, 1, ..., γ}γ−1 . So the system (3) is formed
by (γ + 1)γ−1 + 1 polynomials.

Now, we prove that the polynomials (3) satisfy the assumptions of Dickson’s conjecture.
First, note that Pα1α2...αγ−1(x) and Ppγ (x) are integer-valued polynomials of degree
1 whose leading coefficients are positive. Assume further that there exists an integer
ñ > 1 dividing the product

(4) F(k) =
∏

(α1,α2,...,αγ−1)∈L

Pα1α2...αγ−1(k) · Ppγ (k)

for all integer k . In particular, ñ divides the product (4) for k = ñ. Since

ñ - Pα1α2...αγ−1(ñ)

holds for every (α1, α2, ..., αγ−1) ∈ L, we conclude that ñ divides Ppγ (ñ). Hence, ñ
must be equal to pγ . However, ñ = pγ does not divide the product (4) for k = 1.
By applying Dickson’s conjecture, there exist infinitely many natural numbers (mi)i≥1

such that the numbers: Pα1α2...αγ−1(mi) and Ppγ (mi) where (α1, α2, ..., αγ−1) ∈ L are
primes for all i ≥ 1. By construction, assume that

N = Ppγ (mi0) = pγ1 pγ2 ...p
γ
γ−1pγ+1...pωmi0 + pγ

Journal of Logic & Analysis 17:7 (2025)
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is prime for some positive integer i0 . Next we prove that for any standard integer
s ∈ Z∗ , the number N + s cannot be of the form (A2), although it is written as the
product of two unlimited integers, ie N is of the form (F2). Indeed, we see that

N + s = pγ1 pγ2 ...p
γ
γ−1pγ+1...pωmi0 + pγ + s = pγ1 pγ2 ...p

γ
γ−1pγ+1...pωmi0 + (pγ + s).

If the prime power decomposition of pγ + s is given by pγ + s = p`1
1 p`2

2 ...p
`γ−1
γ−1 (note

that in this product some exponents may be 0), then each `k (1 ≤ k ≤ γ−1) is less than
or equal to γ . In fact, using the construction above, pγ + s < pγ+1 and hence pγ < 2γ .
So if `k ≥ γ for 1 ≤ k ≤ γ − 1, then pγ + s ≥ 2`k ≥ 2γ . This is a contradiction.
Therefore,

N + s = pγ1 pγ2 ...p
γ
γ−1pγ+1...pωmi0 + (pγ + s)

= (pγ + s)

[
pγ1 pγ2 ...p

γ
γ−1pγ+1...pωmi0

(pγ + s)
+ 1

]
= (pγ + s)(pγ−`1

1 pγ−`2
2 ...pγ−`γ−1

γ−1 pγ+1...pωmi0 + 1) = ω1ω2,

where ω1 = pγ + s and ω2 = pα1
1 pα2

2 ...pαγ−1
γ−1 pγ+1...pωmi0 + 1. Clearly, ω1 is unlimited

and also the prime number ω2 is unlimited prime by the above construction. Thus, we
obtain

(5)
ω1

ω2
=

pγ + s
pα1

1 pα2
2 ...pαγ−1

γ−1 pγ+1...pωmi0 + 1
∼= 0,

ie ω1/ω2 is not appreciable. Finally, since ω2 is the largest prime factor of N + s
we conclude from (5) that there is no other factorization of N + s where ω1/ω2 is
appreciable. This completes the proof of Theorem 3.2.

Example 3.3 In [21], Hrbáček proved by assuming Dickson’s conjecture that there
exists an unlimited prime number p such that for every s ∈ Z limited, p + s is of the
form s′ · π where s′ ∈ N is limited and π is unlimited prime.

4 Representation of unlimited natural numbers as in (R2)

The goal of this section is to solve the following problem stated in our earlier paper [5,
Question 5].

Problem 4.1 Let n be an unlimited positive integer of the form s +ω1ω2 where s ∈ Z
is limited and ω1, ω2 are two unlimited positive integers. We ask if n is also of the form
s′ + ω′1ω

′
2 where s′ ∈ Z∗ is limited and ω′1, ω

′
2 ∈ N are unlimited and relatively prime.

Journal of Logic & Analysis 17:7 (2025)
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Theorem 4.2 Let p be an unlimited prime number and let α ≥ 3 be an odd integer.
If n = s + ` · pα , where s ∈ Z and ` ∈ N are limited, then n can be written in
the form n = s′ + ω1ω2 where s′ ∈ Z is limited and ω1, ω2 ∈ N are unlimited with
gcd(ω1, ω2) = 1.

For the proof, we will need the following lemmas.

Lemma 4.3 Let R ≥ 1 be an integer. For every k ≥ 2 we have

(6) Rk − 1 = (R− 1)

(
k−1∑
i=1

(Rk−i − 1) + k

)
.

For every k ≥ 2 we also have

(7) R2k+1 + 1 = (R + 1)

(
(R + 1)

2k∑
i=1

(−1)i−1iR2k−i + 2k + 1

)
.

Proof First, we show (6). Clearly, we see that

Rk − 1 = (R− 1)

(
k−1∑
i=1

Rk−i + 1

)
= (R− 1)

(
k−1∑
i=1

(
Rk−i − 1

)
+ k

)
.

Next, for the proof of (7) we use the principle of mathematical induction on k . For
k = 1 we have R3 + 1 = (R + 1) (R (R + 1)− 2 (R + 1) + 3). Hence, the assertion is
true for k = 1. Let k ≥ 2 and assume that (7) is true for k . We shall prove it for k + 1.
Indeed, we see that

R2k+3 + 1 = R2

{
(R + 1)

(
k−1∑
i=1

(
Rk−i − 1

)
+ 2k + 1

)
− 1

}
+ 1

from which it follows that

(8) R2k+3 + 1 = (R + 1)

(
(R + 1)

2k∑
i=1

(−1)i−1 iR2k+2−i + R2 (2k + 1)

)
− R2 + 1.

Now, we add and subtract R from the right-hand side of (8) to obtain

R2k+3 + 1 = (R + 1)

(
(R + 1)

2k∑
i=1

(−1)i−1 iR2k+2−i + R2 (2k + 1)

)
−R (R + 1) + (R + 1)

and hence

(9) R2k+3 + 1 = (R + 1)

(
(R + 1)

2k∑
i=1

(−1)i−1 iR2k+2−i + R2 (2k + 1)− R + 1

)
.
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By adding the quantity R (2k + 1)− R (2k + 1) + (2k + 1)− (2k + 1) + 1− 1 = 0 to
the second factor in the brackets of (9), we get

R2k+3 + 1 = (R + 1)

(
(R + 1)

2k∑
i=1

(−1)i−1 iR2k+2−i + R2 (2k + 1) + R (2k + 1)

)
+ (R + 1) (−R (2k + 1) + (2k + 1)− (2k + 1) + 1− 1− R + 1)

= (R + 1)

(
(R + 1)

2k∑
i=1

(−1)i−1 iR2k+2−i + R2 (2k + 1) + (2k + 1) R

)
+ (R + 1) (− (2k + 2) (R + 1) + 2 (k + 1) + 1)

= (R + 1)

(
(R + 1)

2k+2∑
i=1

(−1)i−1 iR2k+2−i + 2k + 3

)
.

This proves (7). The proof of Lemma 4.3 is finished.

Lemma 4.4 If ` is limited and λ1, λ2 are relatively prime, then ` ·λ1λ2 = ω1ω2 where
ω1, ω2 are relatively prime.

Proof Let ` = qβ1
1 ...q

βr
r . Then let ω1 = q

βi1
i1 ...q

βis
is · λ1 , where qi1 , ..., qis are those

primes among q1, ..., qr that do not divide λ2 , and let ω2 = q
βj1
j1 ...q

βjr−s
jr−s · λ2 where

qj1 , ..., qjr−s
are those primes among q1, ..., qr that do not divide λ1. The proof is

finished.

Proof of Theorem 4.2 Let q ≥ 3 be a prime divisor of α . Note the existence of such
prime divisor because α ≥ 3 is odd. We let q = 2s + 1, where s ≥ 1. Since we are
going to apply the previous lemma, we put R = p

α
q . Then pα = Rq . Applying (7), we

have

(10) Rq + 1 = R2s+1 + 1 = (R + 1)

(
(R + 1)

2s∑
i=1

(−1)i−1iR2s−i + q

)
.

Let ω1 = R + 1 and let ω2 be the second parenthesis in equation (10); clearly they are
unlimited. We have pα + 1 = ω1ω2 and the only prime that can divide both ω1 and ω2

is q. So if q does not divide ω1 , then ω1 and ω2 are relatively prime and we are done.
If q divides ω1 = R + 1, then it does not divide R− 1 because q ≥ 3. By (6), we have

(11) Rq − 1 = (R− 1)

(q−1∑
i=1

(Rq−i − 1) + q

)
.
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Then let ω′1 = R− 1 and ω′2 be the second parenthesis in (11). Then ω′1 and ω′2 are
relatively prime because obviously no prime other that q could divide them both, and q
does not divide ω′1 . Since pα = ±1 + ω1ω2 . So s + ` · pα = (s ± `) + `ω1ω2 , and
Theorem 4.2 now follows from Lemma 4.4.

Now we are in a position to give the main result of this fourth section:

Theorem 4.5 Let n be an unlimited positive integer of the form (F2). Then n can be
written in the form (R2).

Proof Let n be an unlimited positive integer of the form (F2), ie n = s + ω1ω2 , where
s ∈ Z is limited and ω1, ω2 ∈ N are unlimited. The canonical prime factorization
of ω1ω2 allows us to write ω1ω2 = qα1

1 qα2
2 ...qαt

t , where q1 < q2 < ... < qt and
α1, α2, ..., αt are positive integers. We distinguish the following cases:

Case 1. t ∼= +∞. There exist i < j such that qαi
i and qαj

j are both unlimited. Here, we
let ω′1 = qαj

j and ω′2 = ω1ω2/qαj
j .

Case 2. There is a unique i such that qαi
i is unlimited. Then t is limited and we can

write ω1ω2 = ` · qα where q = qi and α = αi . We distinguish the following subcases:

Subcase A. α is even. Then we write α = 2β and ω1ω2 = l + l · (qβ + 1)(qβ − 1). If
λ1 = qβ + 1 and λ2 = qβ − 1 are relatively prime we apply Lemma 4.4. Otherwise,
they have a common factor 2 and we write

ω1ω2 = `+ 4` ·
(

qβ + 1
2

)(
qβ − 1

2

)
and we apply Lemma 4.4.

Subcase B. α is odd. There are two possibilities:

B.1. q is unlimited. This is Theorem 4.2.

B.2. q is limited, hence α is unlimited. Then we write α = 2β + 1 and

ω1ω2 = q`+ q` · (qβ + 1)(qβ − 1).

We use the same argument as in Subcase A (with q` in place of `). This completes the
proof.

The following corollary shows that every unlimited prime power can expressed as in
(R2).
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Corollary 4.6 Let n = qα be an unlimited prime power with α ≥ 2. Then n can be
written in the form n = s + ω1ω2 where s ∈ Z is limited and ω1, ω2 ∈ N are unlimited
with gcd(ω1, ω2) = 1. That is, n can be represented as in (R2).

Proof Since n = qα can be written as in (F2), it follows from Theorem 4.5 that n can
also be interpreted in the form (R2).

Note that the above Corollary fails for α = 1 (assuming Dickson’s conjecture).

5 On factoring of unlimited terms of some linear recurrence
sequences

In this section we provide some unlimited terms of recurrence sequences which can be
written as the sum of a limited integer and the product of two unlimited positive integers
having the same order. Results along these lines can be found in Boudaoud [6, 7].

Let (Fn)n≥1 be the Fibonacci sequence defined as Fn = Fn−1 + Fn−2 for n ≥ 3, where
F1 = F2 = 1. Its companion Lucas sequence (Ln)n≥1 follows the same recursive pattern
as the Fibonacci numbers, but with initial values L1 = 1 and L2 = 3. The Pell sequence
(Pn)n≥1 is the binary recurrent sequence given by Pn = 2Pn−1 + Pn−2 for n ≥ 3, where
P1 = 1 and P2 = 2. Its companion Pell-Lucas sequence (Qn)n≥1 follows the same
recursive pattern as the Pell numbers, but with initial values Q1 = 1 and Q2 = 3. Also,
the generalized Fibonacci sequence (Gn)n≥1 is given by Gn = Gn−1 + Gn−2 for n ≥ 3,
where G1 = a and G2 = b (here a and b are two limited positive integers). For details,
see Guy [19, page 18], Koshy [25, pages 18,23] and Koshy [26, page 109].

The representation of unlimited numbers as in (F2) was introduced by Boudaoud [6],
which was the first beginning to give examples of numbers written as in (F2). By
applying the same argument as in [7], we can prove that for unlimited n, each of the
integers Fn and Ln is of the form (F2). But the question we ask here: We ask whether
for unlimited n, each of the integers Fn,Ln,Pn,Qn and Gn is of the form (A2).

We prove the following theorem.

Theorem 5.1 Let ω be unlimited. Each of the integers Fω,Lω,Pω,Qω and Gω can
be written in the form s + ω1ω2 where s ∈ Z is limited and ω, ω2 ∈ N are unlimited
with ω1 ∼ ω2 .
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Proof 1) Concerning Fω . We distinguish two cases:

a) ω is odd. We put m = (ω − 1)/2 + 1 and n = (ω − 1)/2. By [26, page 97, identity
39] we have

(12) 5F2
n + 4(−1)n = L2

n,

from which it follows that Ln/Fn is appreciable (note that (12) holds for every n ≥ 1).
Moreover, since Fω = Fm+n , by Koshy [26, page 97, identity 56] we also have

(13) Fω = Fm+n =

{
−Fm−n + LnFm, if n is even
−Fm−n + LmFn, otherwise.

We will now consider separately the two subcases n is even and n is odd:

a-1) n is even. In view of (13), we show that Ln/Fm is appreciable. Indeed, we
have Fm = Fm−1 + Fm−2 , and so Fm/Fn = Fm/Fm−1 = 1 + Fm−2/Fm−1 . Hence
1 < Fm/Fn < 2, ie Fn/Fm is appreciable. Since

Ln

Fm
=

Ln

Fn
· Fn

Fm
,

we have Ln/Fm is also appreciable. Thus, since Fm−n = F1 = 1, we have

Fω = −1 + LnFm

with Ln ∼ Fm .

a-2) n is odd. Similarly, by applying (12), Lm/Fm is appreciable and since

Lm/Fn = Lm/Fm · Fm/Fn,

we get Lm/Fn is appreciable. Thus, Fω = −1 + LmFn with Lm ∼ Fn .

b) ω is even. Put m = (ω − 2)/2 + 2, n = (ω − 2)/2. Then ω = m + n. By [26, page
97, identity 39], we also have (13). We distinguish two subcases:

b-1) n is odd. Applying (12), Ln/Fn is appreciable. On the other hand, m− 1 = n + 1
and m − 2 = n, we have Lm = Lm−1 + Lm−2 = Ln+1 + Ln = 2Ln + Ln−1 . Hence,
Lm/Ln = 2 + Ln−1/Ln , ie 2 < Lm/Ln < 3. Then Lm/Ln is also appreciable. Thus,
Lm/Fn = Lm/Ln ·Ln/Fn is appreciable. In this case, Fω = −1 + LmFn , where Lm ∼ Fn .

b-2) n is even. As in above, from (12), Lm/Fm is appreciable. Also from above Lm/Ln

is appreciable. Hence, Ln/Fm is also appreciable, and so Fω = −1 + LnFm where
Ln ∼ Fm .

2) Concerning Lω . We distinguish two cases:
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Representation of unlimited integers as the product of integers with some constraints 15

a) ω is odd. We put m = (ω + 1)/2 + 1, n = (ω + 1)/2. Then Lω = Lm+n . By [26,
page 91, identity 86]

(14) Lω = Lm+n =

{
Lm−n + LmLn, if n is odd

Lm−n + 5FmFn, otherwise.

There are two possibilities:

a-1) n is odd. Using (14), Lω = 1 + LmLm−1 , where Lm and Lm−1 are of the same
order since Lm = Lm−1 + Lm−2 = Lm−1(1 + Lm−2/Lm−1).

a-2) n is even. By (14), Lω = 1 + 5FmFm−1 .

b) ω is even. Put m = (ω + 2)/2 + 2, n = (ω − 2)/2. Then ω = m + n. Then

Lω = Lm+n = Lm−n + 5FmFn = L2 + 5FmFm−2 = 3 + 5FmFm−2.

But Fm and Fm−2 are of the same order, since

Fm = Fm−1 + Fm−2 = 2Fm−2 + Fm−3 = Fm−2(2 + Fm−3/Fm−2),

ie Fm/Fm−2 = 2 + Fm−3/Fm−2 is appreciable.

3) Concerning Pω . We distinguish two cases:

a) ω = 2j. By Koshy [25, page 123, identity 28], Pω = P2j = 2PjQj . Also by [25,
page 123, identity 31] 2P2

j = −(−1)j + Q2
j . We deduct that Pj and Qj are of the same

order; then also 2Pj and Qj are of the same order.

b) ω = 2j + 1. We see that

P2j+1 = P2j+Q2j = P2j+2Q2
j −(−1)j = 2PjQj+2Q2

j −(−1)j = Qj(2Pj+2Qj)−(−1)j,

where as above Pj and Qj are of the same order.

4) Concerning Qω . We distinguish two cases:

a) ω is odd. In this case Qω = Q2α+1 . Then from [25, page 146, exercise 7, identity 1],
we have Qω = P2α+1 + P2α = 2P2α + Q2α . Applying [25, page 125, identity 32] and
[25, page 123, identity 28], we get

Qω = −(−1)α + 4PαQα + 2Q2
α = −(−1)α + Qα(4Pα + Qα),

where Qα ∼ 4Pα + Qα .

b) ω is even. In this case, Qω = Q2α . Then from [25, page 125, identity 32] we have
Qω = −(−1)α + 2Q2

α .

5) Concerning Gω . We distinguish two cases:
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16 Bellaouar Djamel and Boudaoud Abdelmadjid

a) ω is odd. Put m = (ω − 1)/2 + 1, n = (ω − 1)/2. That is, ω = m + n. Hence we
distinguish two subcases:

a-1) n is odd. By [26, page 114, identity 30], we have

Gω = Gm−n + GmLn = G1 + GmLn = a + GmLm−1.

Since a, b are limited and m is unlimited, Gm/Fm−1 is appreciable because by definition
we have

Gm = aFm−2 + bFm−1 = Fm−1

(
aFm−2

Fm−1
+ b
)

.

On the other hand, by (12), the formula 5F2
m−1 +4(−1)m−1 = L2

m−1 implies Lm−1/Fm−1

is appreciable. Consequently, Gm/Lm−1 is appreciable, ie Gm and Lm−1 are of the
same order.

a-2) n is even. From [26, page 114, identity 30] we also have

Gω = Gm−n + (Gm+1 + Gm−1)Fn = a + (Gm+1 + Gm−1)Fm−1.

As above we can prove that (Gm+1 + Gm−1)/Fm−1 is appreciable, ie Gm+1 + Gm−1

and Fm−1 are of the same order.

b) ω is even. Put m = (ω+ 2)/2 + 1, n = (ω− 2)/2. Then ω = m + n and m− n = 2.
By the same discussion as in the previous cases, we end the proof in question.

Proposition 5.2 Let ω be unlimited, and let Fω be the ω -th Fibonacci number. If ω
is even, then Fω is of the form ω1ω2 where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

Proof Since ω is even, we conclude that Fω = F2m = FmLm . The result holds since
by (12), Lm/Fm is appreciable.

6 Representation of integers having limited numbers of dis-
tinct prime factors

An integer is said to be smooth if it is composed entirely of small prime factors. Smooth
numbers play a crucial role in many interesting number theoretic and cryptography
problems, such as integer factorization (see, eg, Pomerance [31]). In this context, an
integer is said to be k-smooth if it has no prime factor greater than k . So the powers
of 2 are the only 2-smooth numbers. Similarly, 3-smooth numbers are of the form
2a3b and so on. A positive integer is said to be limitedly smooth if its prime factors are
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bounded by a limited integer. Using these numbers we formulate a generalization of a
result stated in our paper [5, Proposition 2.12]. That is, we can derive a representation
of some types of unlimited numbers in the form (A2) using their factorization as product
of prime factors.

Proposition 6.1 Let n ∼= +∞ be limitedly smooth. Then n is of the form s + ω1ω2

where s ∈ Z∗ is limited and ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

Proof Assume that n = qα1
1 qα2

2 ...qαk
k where k is limited, q1, q2, ..., qk are limited

distinct primes and α1, α2, ..., αk are unlimited positive integers. There are three cases
to consider:

Case 1. α1, α2, ..., αk are all even. Clearly,

n = qα1
1 qα2

2 ...qαk
k = 1 +

(
q
α1
2

1 q
α2
2

2 ...q
αk
2

k − 1
)(

q
α1
2

1 q
α2
2

2 ...q
αk
2

k + 1
)

,

which has the required property.

Case 2. α1, α2, ..., αk are all odd. Here we see that

n = qα1
1 qα2

2 ...qαk
k = q1q2...qk · qα1−1

1 qα2−1
2 ...qαk−1

k

= q1q2...qk + q1q2...qk

(
k∏

i=1

q
αi−1

2
i − 1

)(
k∏

i=1

q
αi−1

2
i + 1

)
.

Case 3. Among the numbers α1, α2, ..., αk assume that αi1 , αi2 , ..., αis are even and
αis+1 , αis+2 , ..., αik are odd for s = 1, 2, ..., k−1 (the number k must be ≥ 2). Therefore,

n =
k∏

j=s+1

qij +
k∏

j=s+1

qij

 s∏
j=1

q
αij
2

ij

k∏
j=s+1

q
αij−1

2
ij − 1

 s∏
j=1

q
αij
2

ij

k∏
j=s+1

q
αij−1

2
ij + 1

 ,

as desired. This completes the proof.

Let the positive integer anan−1...a1a0 , where ai are digits like 0, 1, ..., 9 with n ≥ 1
and an 6= 0. Define the function f from N to itself by f (n) =

∏n
i=0(ai + 1).

Corollary 6.2 If f (n) is unlimited, then f (n) is of the form s + ω1ω2 where s ∈ Z∗ is
limited and ω1 , ω2 are two unlimited positive integers with ω1 ∼ ω2 .

Proof From the definition of f (n), we have f (n) = 2α13α25α37α4 , for some integers
αi (1 ≤ i ≤ 4). Since f (n) is unlimited, then max(α1, α2, α3, α4) ∼= +∞. Thus, the
result holds immediately by Proposition 6.1.
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Proposition 6.3 Let n be an unlimited positive integer. If the number of distinct prime
factors of n is limited, then ∑

gcd(r,n)=1
2≤r≤n−1

r

is of the form −1 + ω1ω2 where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

Proof Put n = qα1
1 qα2

2 ...qαk
k where k is limited, q1, q2, . . . , qk are distinct primes and

a1, a2, . . . , ak are positive integers. By Mollin [27, page 100], we have∑
gcd(r,n)=1
2≤r≤n−1

r = −1 +
ϕ(n)n

2
,

where ϕ(n) is the Euler’s function of n. Thus n is of the form −1 + ω1ω2 since ϕ(n)
is even. Moreover, we can write

n
ϕ(n)

=
q1

q1 − 1
· q2

q2 − 1
· ... · qk

qk − 1
,

from which it follows that n/ϕ(n) is appreciable. The proof is finished.

7 Representation of unlimited integers as in (Ak) with k ≥ 2

First, we present some equivalent forms of (F2) and (A2), respectively.

Theorem 7.1 Let n be an unlimited positive integer. Then n is of the form (F2) if and
only if n can be written as m + w1w2 where w1,w2 and m are integers and there exist
integers x and y such that w1 + x and w2 + y are unlimited and s− (w1y + w2x + xy)
is limited.

Proof Suppose that n can be written in the form (F2). That is, n = s + ω1ω2 such
that ω1 ∼= +∞, ω2 ∼= +∞ and s is limited. In this case, we choose m = s, w1 = ω1 ,
w2 = ω2 and x = y = 0.

Conversely, assume that n = m + w1w2 , where w1,w2 and m are integers, and there
exist integers x and y such that w1 + x and w2 + y are unlimited integers with
m− (w1y + w2x + xy) is limited. Then clearly, s = m− (w1y + w2x + xy), ω1 = w1 + x
and ω2 = w2 + y, and so n can be written in the form (F2).

An equivalent form of (A2) is given in the following corollary:
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Corollary 7.2 Let n be an unlimited positive integer. Then n is of the form (A2) if and
only if n can be written as m + w1w2 where w1,w2 and m are integers, and there exist
integers x and y such that w1 + x and w2 + y are unlimited where (w1 + x)/(w2 + y) is
appreciable and m− (w1y + w2x + xy) is limited.

Let us denote by A the collection of all n ∈ N such that n = s + ω1ω2 where s ∈ Z
is limited and ω1 , ω2 ∈ N are unlimited with ω1/ω2 ∼= 1. A natural question is: Are
there integers m, n in A such that mn is also in A?

Theorem 7.3 There are infinitely3 many unlimited positive integers m, n ∈ A such
that mn ∈ A.

Proof Let a, d be two limited integers such that (a, d) = 1. By Lagrange’s identity
(Jarvis [23, Lemma 1.18, page 9]), we have

(15) (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2

for all b, c ∈ Z. Let s be a limited integer. Since gcd(a, d) = 1, then the equation

(16) ax + yd = s

has, by transfer, a standard solution, say (x0, y0) ∈ Z2 . Hence the general solution
of (16) is represented by x(t) = x0 + dt and y(t) = y0 − at where t ∈ Z. Let ω
be an unlimited positive integer and put L = {t ∈ Z : t ≥ ω}. Hence we can take
m(t) = d2 + x2(t) and n(t) = a2 + y2(t), where t runs over L. Then x(t) and y(t) are
simultaneously unlimited. Moreover, m(t) and n(t) are in A for each t ∈ L. By (15)
and (16), the product m(t)n(t) is also in A for each t ∈ L .

Another aim of this section is to give some examples when a standard polynomial of
degree k ≥ 3 is of the form (Ak). Here, we use the notation: Let n = qa1

1 qa2
2 ...q

ar
r be

the factorization of n as a product of powers of distinct primes, and let set(n) denote
the set {q1, q2, ..., qr} with set(1) = ∅. We have the following result:

Theorem 7.4 Let k ≥ 2 be limited. There exists a standard integer-valued polynomial
pk(x) of degree k whose leading coefficient is positive such that, for all unlimited ω ,
pk(ω) is of the form −1 + ω1ω2...ωk where ω1 ∼ ω2 ∼ ... ∼ ωk and gcd(ωi, ωj) = 1
for i 6= j.

3We say that a collection of elements contains infinitely many elements of a given specificity
if it contains an internal part which itself contains infinitely many of these elements.
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We need the following lemma.

Lemma 7.5 There exists a sequence of positive integers ai (1 ≤ i ≤ k) such that:

• a1 < a2 < ... < ak .
• set(aj − ai) ⊂ set(aj) for 1 ≤ i < j ≤ k .

Proof Let p1 = 2, p2 = 3, ..., pr, ... be the enumeration of all primes in increasing
order. Define a sequence Ns for 1 ≤ s ≤ k recursively as follows: N1 = 2;

Ns =
∏

1≤r≤k·Ns−1

pr

for s ≥ 2. Next, let aj =
∑k

`=k−j+1 N` . So

a1 = Nk, a2 = Nk−1 + Nk, . . . , ak = N1 + ...+ Nk−1 + Nk.

For i < j we have

(17) aj− ai =

k∑
`=k−j+1

N`−
k∑

`=k−i+1

N` = Nk−(j−1) + Nk−(j−2) + ...+ Nk−i < k ·Nk−i

and aj = (aj−ai) +
∑k

`=k−i+1 N` . Now, let q be a prime that divides aj−ai . It follows
from (17) that q < k · Nk−i . So, if q = pr for some positive integer r then r < k · Nk−i

and so this prime q divides N` for each k − i + 1 ≤ ` ≤ k , by the definition of the
sequence Ns . Hence q divides aj . This completes the proof.

Proof of Theorem 7.4 Let a1, a2, ..., ak be a sequence as in Lemma 7.5 and define
the polynomial:

pk(x) = a1...akxk+
∑

a1≤ai1<...≤ak

ai1 ...aik−1xk−1+
∑

a1≤ai1<...≤ak

ai1 ...aik−2xk−2+...+

k∑
i=1

aix

First, we see that pk(ω) = −1 + (1 + a1ω)(1 + a2ω)...(1 + akω), which is of the
form −1 + ω1ω2...ωk , where ω1 ∼ ω2 ∼ ... ∼ ωk since a1, a2, ..., ak are limited. Let
di,j = gcd(1 + aiω, 1 + ajω) for 1 ≤ i < j ≤ k . Therefore, di,j divides (aj − ai)ω .
Since set(aj − ai) ⊂ set(aj) for 1 ≤ i < j ≤ k , then di,j divides ajω for 1 ≤ i < j ≤ k .
Hence, di,j divides 1, and so di,j = 1 for 1 ≤ i < j ≤ k . Therefore, gcd(ωi, ωj) = 1
for i 6= j. This completes the proof.

As an application of Theorem 7.4 we present the following example:
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Example 7.6 Let ω be unlimited. We apply the above Theorem with a1 = 2, a2 = 3
and a3 = 4. Thus, 24ω3 + 26ω2 + 9ω is of the form s +ω1ω2ω3 where ω1 ∼ ω2 ∼ ω3

and gcd(ωi, ωj) = 1 for i 6= j. Similarly, we obtain the same result with the polynomial
216ω3 + 126ω2 + 21ω for a1 = 3, a2 = 6 and a3 = 12.

Remark 7.7 Let k, n be positive integers with k ≥ 2 limited and n unlimited. Assume
further that n is of the form (Ak). Then this representation is unique in the following
sense: if (ω′1, ω

′
2, ..., ω

′
k) is another k-tuple that satisfies (Ak) for some limited integer

s′ with ω′i/ω
′
j appreciable for i, j = 1, 2, ..., k , then ω′i/ωj is also appreciable for

i, j = 1, 2, ..., k . We have immediately that each ωi ∼ k
√

n and also each ω′j ∼ k
√

n
(1 ≤ i, j ≤ k), hence ωi ∼ ω′j .

Corollary 7.8 Let n,m be two unlimited positive integers satisfying (Ak). That is,
n = s + ω1ω2...ωk and m = s′ + ω′1ω

′
2...ω

′
k where ωi/ωj and ω′i/ω

′
j are appreciable for

i, j = 1, 2, ..., k . If m/n is appreciable, then ω′i/ωj is also appreciable for i, j = 1, 2, ..., k .

Proof We have ωi ∼ k
√

n and ω′j ∼ k
√

m, hence ωi ∼ ω′j , hence

ω′j/ωi ∼ k
√

m/ k
√

n ∼ m/n

Some special numbers can be represented as 1 + ω1ω2ω3ω4 , where ωi ∼ ωj for
1 ≤ i ≤ j ≤ 4.

Example 7.9 Let Fn be the n-th Fibonacci number with n unlimited. Then F4
n is of

the form 1 + ω1 · ω2 · ω3 · ω4 where ω1 ∼ ω2 ∼ ω3 ∼ ω4 . In fact, by Andrica and
Andreescu [3, Problem 9.6.3, page 359] we have F4

ω = 1 + Fω−2Fω−1Fω+1Fω+2 where
Fω+i ∼ Fω+j for every limited i, j ∈ Z.

Example 7.10 Let q be an unlimited prime number as in Example 3.3 (see Section 3).
Then the number q4−5q2 is of the form −4+ω1 ·ω2 ·ω3 ·ω4 , where ω1 ∼ ω2 ∼ ω3 ∼ ω4

with gcd(ωi, ωj) = 1 for i 6= j. Indeed, we see that

q4 − 5q2 = −4 + (q− 2)(q− 1)(q + 1)(q + 2) = −4 + s1π1 · s2π2 · s3π3 · s4π4

where si ∈ N is limited and πi is unlimited prime for 1 ≤ i ≤ 4. We let ω1 = s1s2s3s4π1 ,
ω2 = π2 , ω3 = π3 and ω4 = π4 .

We give some examples of standard integer-valued polynomials f (x) of odd degree k
whose leading coefficient is positive, such that f (ω) for ω unlimited cannot be written
as

(18) f (ω) = s + ω1ω2...ωk,
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where s ∈ Z is limited and ωi = aiω+xi ∈ N with ai, xi ∈ Q∗ limited for all 1 ≤ i ≤ k .
Let us start with a polynomial of degree 3 that cannot be written as in (18).

Proposition 7.11 Let ω ∈ N be unlimited. The natural number ω(ω2 + ω + 1) is
not of the form s + (a1ω − x1)(a2ω − x2)(a3ω − x3) where ai, xi ∈ Q∗ are limited for
1 ≤ i ≤ 3 with s = x1x2x3 .

Proof Suppose, by way of contradiction, that

ω(ω2 + ω + 1) = s + (a1ω − x1)(a2ω − x2)(a3ω − x3)

for some limited rational numbers ai, xi (1 ≤ i ≤ 3) with s = x1x2x3 ∈ Z. Since ω is
unlimited, then a1a2a3 = 1 and −a1a2x3− a1a3x2− a2a3x1 = 1. It follows from these
equations that x1 = −a1 − a2

1a2x3 − a2
1a3x2 , and since a1x2x3 + a2x1x3 + a3x1x2 = 1

we obtain

(19) − a2
1a2

2 · x2
3 + (a1x2 + a1a2)x3 + a2

1a2
3x2

2 + a1a3x2 + 1 = 0.

Now, assume that (x2, x3) is a solutions of the equation (19). That is,

a2
1a2

2 · x2
3 + (a1x2 + a1a2)x3 + a2

1a2
3x2

2 + a1a3x2 + 1 = 0.

The above equation has no rational solutions since its discriminant

∆ = −3a2
1a2

2 − 2a2
1a2x2 − 3a2

1x2
2

is negative. In fact, we distinguish two cases:

Case1. Assume that a2 and x2 have the same signs. In this case we have ∆ < 0.

Case 2. Assume that a2 and x2 have different signs. Then clearly a2x2 < 0, and hence

3a2
1a2

2 + 2a2
1a2x2 + 3a2

1x2
2 =

{
3a2

1((a′2)2 + x2
2)− 2a2

1(a′2x2), if a2 = −a′2 < 0
3a2

1(a2
2 + (x′2)2)− 2a2

1(a2x′2), if x2 = −x′2 < 0.

Since (a′2)2 + x2
2 > a′2x2 and a2

2 + (x′2)2 > a2x′2 , we conclude that ∆ < 0.

Proposition 7.12 Let k ≥ 3 be odd limited, and let ω be an unlimited positive integer.
The natural number n = ωk is not of the form s + (a1ω − x1)(a2ω − x2)...(akω − xk)
where a1, ..., ak ∈ Q∗ are limited with ak ∈ ]−1, 1[, x1, ..., xk ∈ Q∗ are limited and
s = x1x2...xk .

Proof When k = 3. Assume that ω3 = s + (a1ω − x1)(a2ω − x2)(a3ω − x3), where
ai, xi ∈ Q∗ are limited for 1 ≤ i ≤ 3 and s = x1x2x3 . Applying (22), we obtain
−a2

1a2
2z2 + (−2a1x2 + a1x2)z − a2

1a2
3x2

2 = 0, where z = x3. The discriminant of this
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equation is ∆ = −3a2
1x2

2 < 0, and hence there are no positive rational solutions
x1, x2, x3 of the above equation.

Now, let k ≥ 5 and assume that ωk = s + (a1ω − x1)(a2ω − x2)...(akω − xk), where
a1, ..., ak , x1, ..., xk ∈ Q∗ are limited and s = x1x2...xk . Then a1a2...ak = 1 and

0 =
k∑

i=1

a1...ai−1ai+1...akxi,(20)

0 =
∑

1≤i<j≤k

a1...ai−1ai+1...aj−1aj+1...akxixj.(21)

It follows from (20) that x1 =
∑k

i=2 a2
1...ai−1ai+1...akxi , and by (21) we have

−

(
k−1∏
i=1

a2
i

)
x2

k − 2

 ∑
2≤i≤k−1

a1...ai−1ai+1...akxi

 xk(22)

−
k−1∑
i=2

a2
1...a

2
i−1a2

i+1...a
2
kx2

i − 2
∑

2≤i<j≤k−1

a1...ai−1ai+1...aj−1aj+1...akxixj = 0.

This quadratic equation has the following discriminant:

∆ = (
∑

2≤i≤k−1

a1...ai−1ai+1...akxi)2 +

(
k−1∏
i=1

a2
i

)
×− k−1∑

i=2

a2
1...a

2
i−1a2

i+1...a
2
k−1x2

i − 2
∑

2≤i<j≤k−1

a1...ai−1ai+1...aj−1aj+1...ak−1xixj


= −

k−1∑
i=2

a4
1...a

4
i−1a2

i a4
i+1...a

4
k−1x2

i +
k−1∑
i=2

a2
1...a

2
i−1a2

i+1...a
2
k−1x2

i −

2
∑

2≤i<j≤k−1

a3
1...a

3
i−1a2

i a3
i+1...a

3
j−1a2

j a3
j+1...a

3
k−1xixj +

2
∑

2≤i<j≤k−1

a2
1...a

2
i−1aia2

i+1...a
2
j−1aja2

j+1...a
2
k−1xixj.

Since a1a2...ak = 1 and a2
k < 1, then a2

1...a
2
i−1a2

i+1...a
2
k−1 < a4

1...a
4
i−1a2

i a4
i+1...a

4
k−1

and so

a2
1...a

2
i−1a2

i+1...a
2
k−1x2

i < a4
1...a

4
i−1a2

i a4
i+1...a

4
k−1x2

i , for i = 2, ..., k − 1.

Similarly, we have

a2
1...a

2
i−1aia2

i+1...a
2
j−1aja2

j+1...a
2
k−1 < a3

1...a
3
i−1a2

i a3
i+1...a

3
j−1a2

j a3
j+1...a

3
k−1.
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Since xi and xj have the same parity, it follows that

a2
1...a

2
i−1aia2

i+1...a
2
j−1aja2

j+1...a
2
kxixj < a3

1...a
3
i−1a2

i a3
i+1...a

3
j−1a2

j a3
j+1...a

3
kxixj.

Thus, we have shown that ∆ < 0, and hence (22) has no rational solutions. The proof
is finished.

8 Examples of the natural numbers of the form (AR2)

In this section we present some families of unlimited positive integers which can
be written as the sum of a limited integer and the product of two relatively prime
unlimited positive integers having the same order. That is, we present examples in
which gcd(ω1, ω2) = 1 and ω1/ω2 is appreciable.

Now, let q be a limited prime number. Is qn of the form 1 + ω1ω2 and −1 +$1$2

where ω1 ∼ ω2 , $1 ∼ $2 , gcd(ω1, ω2) = 1 and gcd($1, $2) = 1 for some unlimited
n? When q = 2, the answer is positive as shown in the following proposition; but
replacing the prime 2 by an odd limited prime number yields an immediate open
question.

Proposition 8.1 Let ω be unlimited. Then 24ω+2 can be written in the two forms:
1 + ω1ω2 and −1 + $1$2 where ω1 ∼ ω2 , $1 ∼ $2 , gcd(ω1, ω2) = 1 and
gcd($1, $2) = 1.

Proof Since 24ω+2 + 1 = 4(22ω)2 + 1, it follows that

24ω+2 = −1 + (22ω+1 + 2ω+1 + 1)(22ω+1 − 2ω+1 + 1).

The two factors are both odd, and their difference is 2ω+2 ; hence, they are relatively
prime. On the other hand, it is clear that 24ω+2 = 1 + (22ω+1 − 1)(22ω+1 + 1). This
completes the proof.

Example 8.2 Let ω be an odd unlimited integer, and let n = ω4 + 22ω . One can prove
that n is the form ω1ω2 where ω1 ∼ ω2 and gcd(ω1, ω2) = 1. Indeed, we see that

n = ω4 + 22ω = ω4 + 2ω2 · 2ω + 22ω − 2ω2 · 2ω

= (ω2 + 2ω)2 − (ω · 2
ω+1

2 )2 = (ω2 + 2ω + ω · 2
ω+1

2 )(ω2 + 2ω − ω · 2
ω+1

2 ).

We put ω1 = ω2 + 2ω + ω · 2(ω+1)/2 and ω1 = ω2 + 2ω − ω · 2(ω+1)/2 . Therefore,
ω1 ∼ ω2 and gcd(ω1, ω2) = 1.
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Next, we present some examples on polynomials with integer coefficients, which can
be written in the form (ARk). In particular, we ask whether a polynomial of degree 2 of
the form aω + bω2 where a, b 6= 0 are limited can be expressed as in (A2).

Proposition 8.3 Let n = ω2 + bω , where b ∈ Z is limited. Then n is of the form
s + ω1ω2 where s ∈ Z∗ , ω1 ∼ ω2 and gcd(ω1, ω2) = 1.

Proof First, if b = 0 then

(23) n = ω2 =

{
1 + (ω − 1)(ω + 1), if ω is even

4 + (ω − 2)(ω + 2), otherwise.

Next, assume that b is even and set b = 2km with (m, 2) = 1. There are two cases:

• k = 1 and ω is odd or k ≥ 2 and ω is even. We see that

n = 1− b2

4
+

(
ω +

b
2
− 1
)(

ω +
b
2

+ 1
)

.

• k = 1 and ω is even or k ≥ 2 and ω is odd. We sse that

n =
16− b2

4
+

(
ω +

b
2
− 2
)(

ω +
b
2

+ 2
)
.

Now, if b is odd we have

n =
1− b2

4
+

(
ω +

b− 1
2

)(
ω +

b− 1
2

+ 1
)

.

Thus, in all cases, n is of the form s + ω1ω2 where s ∈ Z∗ is limited, ω1 ∼ ω2 and
gcd(ω1, ω2) = 1. This completes the proof.

Corollary 8.4 Let ω be unlimited and let a ≥ 1 be limited. Then the number
n = aω2 + aω is of the form s + ω1ω2 where ω1 ∼ ω2 and gcd(ω1, ω2) = 1.

Proof Applying Proposition 8.3, ω2 + ω is of the form s + w1w2 where w1 ∼ w2 and
gcd(w1,w2) = 1. Since a is limited, the result follows immediately by distributing the
prime powers that divide a over those of w1 and w2 so that a · w1w2 = ω1ω2 where
ω1 ∼ ω2 and gcd(ω1, ω2) = 1.

Example 8.5 Let q be an unlimited prime number of the form 4k + 1 or 8k ± 1.
There are infinitely many n such that n · q is of the form s + ω1ω2 where ω1 ∼ ω2

and gcd(ω1, ω2) = 1. In fact, if q is of the form 4k + 1, then by Adler and Coury [1,
Theorem 5.11, page 130], there exists an integer x̃ such that

(24) x̃2 = −1 + λ0q
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for some positive integer λ0 . Since x̃ + λq also satisfies (24) for every λ ≥ 1, there
exist infinitely many n such that n · q = 1 + x2 , where x ∈ N is unlimited. Similarly, by
[1, Theorem 5.12, page 130], if q is of the form 8k ± 1 then there exist infinitely many
n such that n · q = −2 + x2 for some unlimited x ∈ N. In both cases, by applying (23)
we have the desired result.

9 Unlimited natural numbers of the form s + ωk

Let us start with an example involving Lucas numbers (Lω) with ω ∼= +∞. From
Koshy [26, page 97, Formula 41], if ω is even then L2ω = −2 + L2

ω and if ω is odd,
then L2ω = 2 + L2

ω .

Many conjectures in elementary number theory lead to the existence of unlimited prime
numbers of the form s + ωk where s and k are limited. Let us mention two conjectures.

Conjecture 9.1 (see Shanks [36, page 31]) There are infinitely many primes of the
form −2 + ω2 .

Conjecture 9.2 (see Nathanson [28, page 287]) There are infinitely many primes of
the form 1 + ω2 .

In the same way, we get:

Proposition 9.3 Let n be unlimited. Then n2 is not of the form s + ω2 where s ∈ Z∗
is limited and ω ∈ N is unlimited.

Proof If n2 can be written in the desired form, then (n− ω)(n + ω) = s. But, this is a
contradiction since the left-hand side of this equation is unlimited, while its right-hand
side is limited.

We can deduce from Proposition 9.3 the following result.

Corollary 9.4 Let n be unlimited odd and let s ∈ Z∗ be limited. Then n− s and n + s
are not both a perfect square.

In addition, assume that s ∈ Z∗ is odd (limited or not). There are no positive integers n
such that n− s and n + s are a perfect square. Otherwise, (u− v)(u + v) = 2s for some
positive integers u, v. Since u− v and u + v are distinct and of the same parity, the
only possibility is u− v = 2 and u + v = s. Thus, s is even and this is a contradiction.

The following facts are easy consequences of results in the literature:
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(1) Erdös and Selfridge [15] proved that a product of consecutive integers can never
be a perfect power. In this context, the product of two consecutive unlimited
integers cannot be written in the form s + ω2 , where s ∈ Z is limited and
ω ∈ N is unlimited. In fact, if n(n + 1) = s + ω2 , then clearly ω > n and
(ω − n)(ω + n) = n− s which is impossible.

(2) Let n be an unlimited positive integer of the form 4k + 1. From Mollin [27,
Example 1.26, page 51], there does not exist an unlimited integer λ such that
λ · n = 1 + ω2 for some unlimited integer ω .

(3) Let n be unlimited. Assume that n = R · S where the canonical factorization of
R (resp. of S) is 2α

∏
p≡1(mod 4)

pβ
∏

q≡3(mod 4)
qγ (resp. 2α̃

∏
p≡1(mod 4)

pβ̃
∏

q≡3(mod 4)
qγ̃ )

with α, α̃, β, β̃ ≥ 0 and max(γ, γ̃) ≥ 1. If
∑
γ +

∑
γ̃ is odd, then n cannot be

written as 1 + ω2 . Indeed, by Niven [30, Theorem 2.15, page 55], at least one of
the integers R, S cannot be written as the sum of two squares, since there is at
least an exponents γ in R or an exponents γ̃ in S which is odd. Consequently,
by Fine [17, Theorem 3.2.3, page 98], n cannot be written as the sum of two
squares.

Now, we deal with Bachet’s equation which is of the form x3 = k + y2 where k is an
integer. For details, see Felgner [16]. These equations have long been investigated by
many authors, but for some of k , even small, not all the solutions in integers x, y have
been found. We consider the case when x and y are unlimited and k is limited. We
prove the following theorem:

Theorem 9.5 There are no unlimited positive integer n such that

(25) n3 = s3 + ω2,

where s ∈ N∗ is limited and ω ∈ N has only unlimited prime factors.

Proof Assume that (9.5) holds for some unlimited n ∈ N. We rewrite this equation in
the form (n− s)(n2 + ns + s2) = ω2 . Note that if gcd(n− s, n2 + ns + s2) = d > 1,
then d divides the linear combination n2 + ns + s2 − (an + b)(n− s) where a, b ∈ Z.
In particular, for a = 1 and b = 2s we have d divides 3s2 . Since d divides ω2 , we
conclude that there exists a limited prime number p which divides ω . This is impossible
because ω has only unlimited prime factors. Therefore, both n− s and n2 + ns + s2

are perfect square. If we put x =
√

n− s, it follows that

n2 + ns + s2 = (x2 + s)2 + (x2 + s)s + s2 = x4 + 3sx2 + 3s2,

and so

(26) 4(n2 + ns + s2) = (2x2 + 3s)2 + 3s2.
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We set u = 2
√

n2 + ns + s2 and v = 2x2 + 3s = 2n + s, we see from (26) that

(u− v)(u + v) = 3s2,

which contradicts the fact that s 6= 0 is limited and u +v ∈ N is unlimited. This
completes the proof.

Corollary 9.6 Let k ≥ 1 be limited. There are no unlimited positive integer n such
that n2k = s2k + ω2 where s ∈ N∗ is limited and ω ∈ N has only unlimited prime
factors.

Proof Let n be unlimited, and assume that n2k = s2k + ω2 , where s ∈ N∗ is limited
and ω ∈ N is unlimited. We put nk = m and sk = s′ . Hence

n2k − s2k = (m− s′)(m + s′) = ω2.

Clearly, gcd(m − s′,m + s′) = 1 since ω has only unlimited prime factors. Thus,
m + s′ and m− s′ are perfect squares. We put u =

√
m + s′ and v =

√
m− s′ , then

(u− v)(u + v) = 2s′ . A contradiction since s′ ∈ N∗ is limited and u + v ∼= +∞. The
proof is finished.

Corollary 9.7 Let n be unlimited. Then n2 is not of the form s2 + ωk , where s ∈ N∗
is limited, k ≥ 3 is odd limited and ω ∈ N has only unlimited prime factors.

Proof Assume that (n− s)(n + s) = ωk for some limited s ∈ N∗ , k ≥ 3 is odd and
ω ∈ N has only unlimited prime factors. Let gcd(n− s, n + s) = d . Since d divides
ωk , then d = 1 and so n − s = ωk1 and n + s = ωk2 , where k1 and k2 are positive
integers (k1 < k2 and k1 + k2 = k) one of which is odd and the other is even. Thus, we
see that n− s � n + s. This is impossible.

Proposition 9.8 Let `, n, ω be positive integers satisfying

(1) ` ∈ Z∗ is limited with ` | n,
(2) n is unlimited and n− ` is prime,
(3) ω is unlimited, n | (ω − `), (n− `) - ω and ω | (n3 − `3).

Then ω is of the form s + ω1ω2 where s ∈ Z is limited and ω1, ω2 are two unlimited
positive integers satisfying the conditions ω1/ω2 ∼= `.

As an example, let us take ` = 1 and ω = n2 + n + 1 where n ∼= +∞ and n− 1 is
prime.
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Proof of Proposition 9.8 Since n3 − `3 = (n− `)(n2 + `n + `2) and ω | (n3 − `3), it
follows that ω | (n2 + `n + `2). Then there exists a positive integer k such that

(27) kω = n2 + `n + `2.

On the other hand, n | (ω − `) implies ω ≡ `(mod n), and therefore kω ≡ k`(mod
n). By (27), n2 + `n + `2 ≡ k`(mod n), or equivalently, k` ≡ `2(mod n). Thus,
k ≡ `(mod n

` ). Therefore, k = ` + a n
` , ω = ` + bn for some integers a ≥ 0 and

b ≥ 1 since ω ∼= +∞. Substituting these values of k and ` in (27), we obtain
(`+ a n

` )(`+ bn) = n2 + `n + `2 , and hence

(28) ab
n
`

+ a + b` = n + `.

We distinguish the following cases:

1. If ` > 0, then ab n
` + a + b` ≥ n + 1 + ` > n + `, which is impossible.

2. If ` < 0, then (28) gives

(29)
(

ab
`′

+ 1
)

n = (b− 1)`′ + a,

where `′ = −` > 0. We also distinguish two cases:

2.1. If a, b are limited, then (29) gives ab = −`′ = ` < 0 which is not valid.

2.2. Let a or b be unlimited. In the case when a ≥ 1 is limited, it follows from (29) that
(b− 1)`′ + a/( ab

`′ + 1) ∼= +∞. A contradiction. In the case when a is unlimited and b
is limited, by (29) we see that b/`′ ∼= 0, which is impossible. Also, if a, b ∼= +∞, then
(28) does not hold.

Finally, we can deduce that a = 0 and so k = l. Using (27), we see that

ω =
n2 + `n + `2

`
= `+ n

(
1 +

n
`

)
,

which is of the desired form where ω1 = n and ω2 = 1 +
n
`

.

10 Special numbers of the form (A2)

A Cullen number is a number of the form 1 + n · 2n (denoted by Cn ), where n is a
nonnegative integer (see, eg, [19, B 20]). By definition, it is clear that if n is unlimited
then Cn is of the form 1 + ω1ω2 where ω1, ω2 ∈ N are unlimited; but ω1 � ω2 . In
addition, we see that gcd(ω1, ω2) = 1 whenever n is odd.

The starting point for this note is the following result.
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Proposition 10.1 Let n be unlimited. Then Cn is of the form 1 + ω1ω2 where
ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

Proof Clearly, Cn = 1+n ·2n , where n/2n ∼= 0. Put ui = n ·2i/2n−i for i = 0, 1, ..., n.
Then for every i = 0, 1, ..., n− 1, we have

ui+1

ui
=

n · 2i+1

2n−(i+1) ·
2n−i

n · 2i = 4.

On the other hand, we see that u0 ∼= 0 and un = n · 2n ∼= +∞. Consequently, there
exists an unlimited integer i0 < n such that the number ui0 = n ·2i0/2n−i0 is appreciable.
Therefore, Cn = 1 + n · 2n = 1 + (n · 2i0) · 2n−i0 = 1 + ω1ω2 where ω1 = n · 2i0 and
ω2 = 2n−i0 are two unlimited positive integers such that ω1 ∼ ω2 . This completes the
proof.

Remark 10.2 The previous reasoning works with any sequence of positive integers
of the form a + n · bn with n ≥ 1, where a, b are limited positive integers with
b ≥ 2. For example, the generalized Cullen numbers which are numbers of the form
Cn,s = 1 + n · sn , where n ≥ 1 and s ≥ 2 is limited.

Corollary 10.3 Let k ≥ 1 be limited and let n be unlimited such that n = qa1
1 ...q

ak
k ,

where q1, ..., qk are limited distinct primes and a1, . . . , ak are positive integers with
max(a1, . . . , ak) ∼= +∞. Then Cn is of the form s + ω1ω2 where s ∈ N is limited and
ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 and gcd(ω1, ω2) = 2.

Proof This follows immediately from Proposition 6.1 since

Cn = 1 + qa1
1 ...q

ak
k · 2

n,

which is of the form 1 + a · m, where a is limited and m is an unlimited smooth
number.

Corollary 10.4 Let a, k, s be limited positive integers with s ≥ 2. Define Cn,s,k =

a + pk(n) · sn , where n ≥ 1 and pk is an integer-valued polynomial whose leading
coefficient is positive. If n is unlimited, then Cn,s,k is of the form a + ω1ω2 , where
ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

Proof The proof follows the idea of the proof of Proposition 10.1.

Remark 10.5 Let n be unlimited. We do not know whether n · 2n is of the form ω1ω2

where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 and gcd(ω1, ω2) = 1 (The proof of
Proposition 10.1 does not apply).
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Some numbers of the form a · pn where a, p ≥ 1 are limited and n is unlimited can
be written as a sum of a nonzero limited integer and a product of two relatively prime
unlimited positive integers having the same order. It is in fact the subject of Proposition
10.6. In addition, for every limited prime number q different from p, there exists an
unlimited integer ω for which pn/qω is appreciable, where gcd(pn, qω) = 1. In the
following proposition we show that a′ · pn can also be written as a product of two
relatively prime unlimited positive integers having the same order for infinitely many
positive integers a′ .

Proposition 10.6 Let p ≥ 3 be a limited prime number and let n be unlimited. There
exist infinitely many positive integers a′ such that a′ · pn can be written in the form
ω1ω2 where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 and gcd(ω1, ω2) = 1.

Proof Let ϕ(n) be the Euler’s function of n and let q be a prime number with p 6= q.
Since ϕ(pn) = (p− 1)pn−1 , we conclude from Euler’s Theorem (see, eg, Andrica and
Andreescu [3, page 147]) that q(p−1)pn−1 ≡ 1(mod pn). Thus, there exists an unlimited
positive integer aq = a′ such that

a′ · pn = −1 + q(p−1)pn−1
= (q

(p−1)pn−1

2 − 1)(q
(p−1)pn−1

2 + 1).

Clearly, 1 is the highest power of 2 which divides both q
(p−1)pn−1

2 − 1 and q
(p−1)pn−1

2 + 1.
So by Lemma 4.4, a′ · pn can be written as the desired form. The proof is finished.

We now consider some additional special kinds of numbers.

(1) Let q be an odd prime. Numbers of the form Mq = 2q − 1 are called Mersenne
numbers4 . If q ∼= +∞, then Mq is of the form 1 + ω1ω2 , where ω1, ω2 ∈ N are
unlimited with ω1 ∼ ω2 and gcd(ω1, ω2) = 1. In fact, we have

Mq = 1 + 2(2(q−1)/2 − 1)(2(q−1)/2 + 1).

(2) Recall that the integer fn = 22n
+ 1 is called the n-th Fermat number. If n is

unlimited, then fn is of the form 2 + ω1ω2 where ω1, ω2 ∈ N are unlimited with
ω1 ∼ ω2 and gcd(ω1, ω2) = 1. In fact, we have

fn = 1 + (fn−1 − 1)2 = 2 + fn−1(fn−1 − 2),

where gcd(fn−1, fn−1 − 2) = 1.

4See Guy [19, page 13]; it is an unsolved problem to determine whether there are infinitely
many Mersenne primes.
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(3) fn+1 + fn is of form 1 + ω1ω2 , where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2

and gcd(ω1, ω2) = 1. In fact, we have

fn+1 + fn = 1 + (22n
+ 1− 22n−1

)(22n
+ 1 + 22n−1

).

(4) Let Fn be the n-th Fibonacci number. If n is unlimited, then Fn is of the form
−1 + ω1ω2 , where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 and also Fn is of the
form 1 +$1$2 where $1, $2 ∈ N are unlimited with $1 ∼ $2 . Indeed, the
claim follows immediately from Koshy [26, page 205, Theorem 16.9] since we
have

(30)

(a) F4n = −1 + F2n−1 · L2n+1 (e) F4n = 1 + F2n+1 · L2n−1

(b) F4n+1 = −1 + F2n+1 · L2n (f) F4n+1 = 1 + F2n · L2n+1

(c) F4n+2 = −1 + F2n+2 · L2n (g) F4n+2 = 1 + F2n · L2n+2

(d) F4n+3 = −1 + F2n+1 · L2n+2 (h) F4n+3 = 1 + F2n+2 · L2n+1.

(5) Let q be a Hrbáček prime number, that is, a prime number such that for every
limited s ∈ Z we have q + s = s′ · π for some limited s′ ∈ N and for some
unlimited prime number π . For each such prime q we put n = q2 . Then n is
of the form 1 + s · (π1 · π2), where π1, π2 are unlimited primes with π1 ∼ π2 .
Indeed, n = 1 + (q− 1)(q + 1) = 1 + (s1 · π1)(s2 · π2), as required.

(6) There exist infinitely many pairs of different positive integers m and n such
that: (i) m and n have the same prime divisors. Also n + 1 and m + 1 have the
same prime divisors as n + 1 = (m + 1)2 . (ii) Each of the numbers n,m, n + 1
and m + 1 can be written in the form (A2). For the proof it suffices to take the
numbers n = 2ω+1(2ω−1 − 1) and m = −2 + 2ω where ω is unlimited.

Proposition 10.7 Let ω be unlimited. If ω is even, then Fω is of the form ω1ω2 where
ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

Proof Since ω is even, then by [26, page 96, Formula 29], Fω = F2m = Fm · Lm . The
result holds since by (12) Fm ∼ Lm .

Let α ∈ R∗+ be an appreciable real number such that its standard part α◦ is irrational
(for details on the number α◦ , see Diener and Reeb [14, page 28]).

Theorem 10.8 There exist unlimited positive integers N, ω1, ω2 and a limited integer
s ∈ {0, 1,−1} such that [Nα] = s + ω1ω2 where ω1 ∼ ω2 and gcd(ω1, ω2) = 1.

Proof We put α = α◦ + θ , where θ ∼= 0. Let (pk/qk)k≥0 be the k-th convergent of
the continued fraction of α◦ . Since the standard sequence of positive integers (q2

k)k≥0
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is monotonically increasing there exist, by Cauchy’s principle, an unlimited positive
integer k0 satisfying q2

k0
θ ∼= 0. Let k be an unlimited positive integer such that 2k < k0 ,

that is, q2
2kθ
∼= 0. On the other hand, by Hardy and Wright [20, Theorem 164, page

176], we conclude that 0 < α◦− p2k/q2k < 1/q2
2k for k ≥ 1, from which it follows that

0 < q2
2kα − q2kp2k < 1. Hence, q2

2kα
◦ − q2kp2k = e with 0 < e < 1. Equivalently,

q2
2kα
◦ = e + q2kp2k . Therefore,

q2
2kα = q2

2k(α◦ + θ) = q2kp2k + e + q2
2kθ = q2kp2k + e + θ̃,

where θ̃ ∼= 0. From above we have
[
q2

2kα
]

= s + q2kp2k where s ∈ {−1, 0, 1}. We
finish the proof if we take N = q2

2k , ω1 = q2k and ω2 = p2k . Note that ω1 ∼ ω2 , and
by the properties of the continued fraction of α◦ we have gcd(ω1, ω2) = 1.

We give examples of numbers of the form ω1ω2 where ω1, ω2 are two unlimited positive
integers such that ω1 ∼ ω2 , but they can also written in the form s + $1$2 where
s ∈ Z∗ is limited and $1, $2 ∈ N are unlimited with $1 ∼ $2 .

Example 10.9 Let ω be unlimited.
(1) From Proposition 10.7 and Equations (a) and (c) in (30), we obtain

Fω · Lω = F2ω =

{
−1 + F2m−1 · L2m+1, if ω = 2m

−1 + F2m+2 · L2m, if ω = 2m + 1

where Fω ∼ Lω , F2m−1 ∼ L2m+1 and F2m+2 ∼ L2m .
(2) If ω is odd, then by applying [26, page 96, Formula 13] we get

Lω+1 · Lω−1 = −1 + L2
ω.

If ω is even, then by [26, page 112, Theorem 7.5] we have

Lω+1 · Lω−1 = −5 + L2
ω.

(3) Applying Koshy [25, page 148-149, Formulas 28,48], we also have

P2ω = 2Pω · Qω = ±2 + 2Pω+1 · Qω−1

where Pω ∼ Qω and Pω+1 ∼ Qω−1 .

Let m be unlimited. The following example produces unlimited positive integers of the
form n = d0d1...dm (here di is limited for every i ≥ 1 limited) which can be written in
the form s + ω1ω2 , where ω1 ∼ ω2 .

Example 10.10 Let n be an unlimited positive integer and for 1 ≤ i ≤ n − 1, set
di = 22i

+ 1 (1 ≤ i ≤ n− 1). We can easily prove that

3 ·5 ·17 · · ·
(

22n−2
+ 1
)(

22n−1
+ 1
)

=
(

22n−1 − 1
)(

22n−1
+ 1
)

= −1+22n−1 ·22n−1
,

which is of the form ω1ω2 and −1 +$1$2 where ω1 ∼ ω2 and $1 ∼ $2 .
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11 Is there an unlimited prime number of the form (A2) or
(R2) or (AR2)?

In this section, we mention some conjectures in number theory (which are considered
to be classic open problems in mathematics) that are similar to the one about unlimited
primes of the form s + ω1ω2 where ω1 and ω2 have the same order.

In [22], Iwaniec proved that there are infinitely many n such that 1 + n2 is either prime
or the product of two primes. From this result, we deduce that there are unlimited
positive integers ω such that 1 + ω2 is either prime or the product of two primes. Thus,
by Proposition 8.3 (for b = 0), there exists an unlimited prime number of the form
(AR2) or there exist two prime numbers p, q with q ∼=∞ such that p · q is of the form
(AR2). More precisely, by [22] and Proposition 8.3, there exists an unlimited prime
number p such that

p =

{
2 + (n− 1)(n + 1), for n even

5 + (n− 2)(n + 2), otherwise

or there exist two prime numbers p, q with q ∼=∞ such that

p · q =

{
2 + (n− 1)(n + 1), for n even

5 + (n− 2)(n + 2), otherwise

where n ∼=∞. Similarly, if Conjectures 9.1 and 9.2 are true, then by Proposition 8.3
there are infinitely many primes of the form (AR2).

Next, according to the theorems that have been proven that there are infinitely many
prime numbers of the form s + w1w2 where s ∈ Z is small and w1,w2 ∈ N are
sufficiently large, we can prove the following proposition:

Proposition 11.1 There are infinitely many primes of the form s + ω1ω2 where
ω1, ω2 ∈ N are unlimited with gcd(ω1, ω2) = 1.

Proof Let ω be unlimited. By Dirichlet’s Theorem (see, for example, Nathanson
[28, Theorem 10.9, page 347]) there are infinitely many primes of the form 1 + 2ω · t ,
where t ∼= +∞. When t is divisible by an unlimited odd prime power, it is done.
Otherwise, we apply Proposition 6.1 and Theorem 4.5 when t is either limited or the
product of a limited integer t′ and an unlimited prime power of the form 2x . The proof
is finished.
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From the above proposition, it is not possible to deduce that there are infinitely many
primes of the form (A2). However, if there are infinitely many prime numbers of the
form a + n2 where a ∈ Z∗ is limited, then by Proposition 8.3 (for b = 0) there are
infinitely many prime numbers of the form s + ω1ω2 where s ∈ Z is limited and
ω, ω2 ∈ N are unlimited with ω1 ∼ ω2 and gcd(ω1, ω2) = 1. In fact, by Proposition
8.3 we get:

a + n2 =

{
a + 1 + (n− 1)(n + 1), if n is even

a + 4 + (n− 2)(n + 2), otherwise.

There are open problems regarding the digits of unlimited integers, whose validity
implies the existence of unlimited prime numbers of the form (AR2). In De Koninck
and Mercier [10, Problem 260, page 159], we do not know whether there are infiniely
many prime numbers whose digits (in the decimal expansion) equal 1. In fact, if there
exists an unlimited positive integer ω such that p = 11 . . . 1︸ ︷︷ ︸

ω-times

is prime5 , then

p =


1 + (1 0 . . . 0︸ ︷︷ ︸

(k−1)-times

1)( 102k−1
1 0 . . . 0︸ ︷︷ ︸

(k−1)-times

1
+ 11 . . . 1︸ ︷︷ ︸

k-times

), if ω = 2k + 1

1 0 . . . 0︸ ︷︷ ︸
(k−1)-times

1× 11 . . . 1︸ ︷︷ ︸
k-times

, if ω = 2k.

In both cases, p can be written as in (A2). Applying Theorem 4.5, p is of the form
s + ω1ω2 where s ∈ Z and gcd(ω1, ω2) = 1. Similarly, we do not know whether there
are infinitely many prime numbers p of the form 100...0d where 1 ≤ d ≤ 9. If this
fact is true, then there are unlimited prime numbers of the form s + ω1ω2 where s ∈ Z∗
is limited and ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 . In fact, if p = 1 00 . . . 0︸ ︷︷ ︸

ω-times

d for

some ω ∼=∞, then p = d + 10ω and from Example 1.2, p is of the form (AR2).

Definition 11.2 Bunyakovsky’s conjecture [8] states that under special conditions,
polynomial integer functions of degree m greater than one generate infinitely many
primes. These conditions are: (i) the coefficients of the polynomial have to satisfy:
gcd(coefficients) = 1, (ii) the polynomial has to be irreducible, that is to say, not
divisible by any other polynomial of degree d with 0 ≤ d < m. We deduce from this
conjecture that if f (x) is an irreducible polynomial with integer coefficients and if N
denotes the greatest common divisor of the numbers f (x), x running over all integers,
then the polynomial f (x)/N takes prime number values for infinitely many x. Under

5The first positive integers n such that 11 . . . 1︸ ︷︷ ︸
n-times

is prime are 2, 19, 23, 317, 1031, . . .
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this conjecture, we can also prove that there are infinitely many primes of the form
(AR2).

Proposition 11.3 Assuming Bouniakowsky conjecture [8], there are infinitely many
primes of the form 2 + ω1ω2 where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 and
gcd(ω1, ω2) = 1.

Proof Consider the polynomial p(x) = x2 + x + 4 which is irreducible, and for all
integers x the numbers p(x) are even. Since f (0) = 4 and f (1) = 6, we deduce that
for x running over all integers the greatest common divisor of the numbers p(x) is 2.
Consequently, it follows from the conjecture of Bouniakowsky that for infinitely many
integers x the number p(x)/2 is prime, say p. Thus, p = 2 + x(x + 1)/2 which is of
the form 2 + ω1ω2 where ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 . As x(x + 1)/2 is
always an integer and gcd(ω1, ω2) = 1, the proof is finished.

Theorem 11.4 The following statements are equivalent:
(S) There exist unlimited positive integers ω1, ω2 such that ω1 ∼ ω2 and a limited

s ∈ Z such that s + ω1 · ω2 is prime.
(C) There exist k ≥ 1 and s ∈ Z such that for every n there exist m, x such that

x > n,m and the value of the form k · x2 + m · x + s is a prime number.

Proof Assume (S) holds. Without loss of generality, assume that ω1 ≤ ω2 . Then ω2

= k · ω1 + µ where k ≥ 1 is limited and µ < ω1 and s + ω1 · ω2 = k · ω2
1 + µ · ω1 + s.

Thus we have (take x = ω1,m = µ)

∃x∀stn (x > n ∧ ∃m (m < x ∧ k · x2 + m · x + s is prime)).

Using Idealization we rewrite this statement as

∀stn∃x (x > n ∧ ∃m (m < x ∧ k · x2 + m · x + s is prime)).

By Transfer (C) holds.

Conversely, if (C) holds, then by Transfer there exist standard k > 0 and s ∈ Z such
that

∀n∃x (x > n ∧ ∃m (m < x ∧ k · x2 + m · x + s is prime)).

We take n unlimited and ω = x > n (hence, ω is unlimited) such that for some m < ω

the value of k · ω2 + m· ω +s is a prime number. It remains to let ω1 = ω and ω2

= k · ω +m; clearly ω1 ∼ ω2 and (S) holds.

An equivalent formulation of (C) is (C ′ ): There exist k ≥ 1 and s ∈ Z such that the
value of the polynomial k · x2 + x · y + s is a prime number for infinitely many pairs
x, y with x > y.
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12 Open questions

As our final conclusion, we propose for further research the following interesting
problems:

(1) Does there exist an unlimited prime number of the form s + ω1ω2 where s ∈ Z∗
is limited and ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 ?

(2) Assume that n = s +ω1ω2 where s ∈ Z is limited and ω1, ω2 ∈ N are unlimited
with ω1 ∼ ω2 . Is n of the form s′ + $1$2 where s′ ∈ Z is limited and
$1, $2 ∈ N are unlimited with $1 ∼ $2 and gcd($1, $2) = 1?

(3) Let n, q be unlimited with q prime. Using the ideas outlined in Proposition
10.1, is 2n · q of the form s + ω1ω2 where s ∈ Z∗ is limited and ω1, ω2 ∈ N are
unlimited with ω1 ∼ ω2 ?

(4) Let n be unlimited. Is 2n + n of the form s + ω1ω2 where s ∈ Z is limited and
ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 ?

(5) Let p, q be two unlimited primes such that p ∼ q. Is pq of the form s + ω1ω2

where, s ∈ Z∗ is limited and ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 ?
(6) Let n = pq, where p, q are two unlimited primes with p � q. Is n of the form

s + ω1ω2 where s ∈ Z∗ is limited and ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 ?
(7) Let pi be the i-th prime number. In the case when n is unlimited, we ask if the

number ωn = 2 · 3...pn−1pn can be represented as s + ω1ω2 where s ∈ Z∗ is
limited and ω1, ω2 ∈ N are unlimited with ω1 ∼ ω2 .

(8) Let ω1, ω2 be two unlimited positive integers such that ω1 ∼ ω2 . Is ω1ω2 of the
form s + $1$2 where s ∈ Z∗− is limited and $1, $2 ∈ N are unlimited with
$1 ∼ $2 ?

(9) Let k ≥ 2 be limited. As a generalization of Theorem 9.5, are there unlimited
positive integers n such that n2k+1 = s2k+1 + ω2 where s ∈ N∗ is limited and
ω ∈ N has only unlimited prime factors?

(10) Are there unlimited positive integers n such that n3 = s + ω2 where s ∈ N∗ is
limited and ω ∈ N has only unlimited prime factors?

(11) Are there unlimited positive integers n such that n3 = s + ω1ω2 where s ∈ N∗ is
limited and ω1, ω2 ∈ N with ω1 6= ω2 and ω1 ∼ ω2 ?

(12) Let S(t) denote the sum of the digits of t . Does there exist an unlimited prime
number of the form s + ω1ω2 where s ∈ Z is limited and ω1, ω2 ∈ N are
unlimited with S(ω1), S(ω2) limited?

(13) Let n be an unlimited positive integer, and let Fn be the Fibonacci number. We
ask whether Fn can be represented in the form Fn = s + ω1ω2ω3 where s ∈ Z is
limited and ω1, ω2, ω3 ∈ N are unlimited with ωi ∼ ωj for 1 ≤ i, j ≤ 3.

Journal of Logic & Analysis 17:7 (2025)



38 Bellaouar Djamel and Boudaoud Abdelmadjid

(14) Is every unlimited positive integer n of the form n = ω1 + ω2 + ω3ω4 where
ωi ∈ N is unlimited with ωi ∼ ωj and gcd(ωi, ωj) = 1 for i 6= j?
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