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Abstract: We provide choiceless proofs using infinitesimals of the global versions
of Peano’s existence theorem and Osgood’s theorem on maximal solutions. We
characterize all solutions in terms of infinitesimal perturbations. Our proofs are
more effective than traditional non-infinitesimal proofs found in the literature. The
background logical structure is the internal set theory SPOT , conservative over
ZF .
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1 Introduction

Nonstandard analysis (NSA) is sometimes criticized for its implicit dependence on
strong forms of the Axiom of Choice (AC). Indeed, if ∗ is the mapping that assigns
to each X ⊆ N its nonstandard extension ∗X , and if ν ∈ ∗N \ N is an unlimited
integer, then the set U = {X ⊆ N | ν ∈ ∗X} is a nonprincipal ultrafilter over N. Of
course strong forms of AC, such as Zorn’s Lemma, are a staple of modern set-theoretic
mathematics, but it is undesirable to have to rely on them for results in ordinary
mathematics dealing with Calculus or differential equations (see Simpson [18] for a
discussion of the distinction between set-theoretic and ordinary mathematics). The
traditional proofs of most theorems in ordinary mathematics are effective: they do not
use AC.1 A few results, such as the equivalence of the ε-δ definition and the sequential
definition of continuity for functions f : R→ R, require weak forms of AC, notably
the Axiom of Countable Choice (ACC) or the stronger Axiom of Dependent Choice
(ADC). These weak forms are generally accepted in ordinary mathematics; they do not
imply the strong consequences of AC such as the existence of nonprincipal ultrafilters

1In this paper the word effective means without the Axiom of Choice. In reverse mathematics,
constructive mathematics and other areas, it usually has more restrictive meaning.
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or the Banach–Tarski paradox (see Jech [12], Howard and Rubin [7]). We refer to such
proofs as semi-effective.

An answer to the above criticism of NSA is offered by recent developments in the
axiomatic/syntactic approach that dates back to the work of Hrbacek [8] and Nelson [15].
A number of axiomatic systems for NSA have been proposed, of which Nelson’s
IST is the best known. We refer to Kanovei and Reeken’s monograph [13] for a
comprehensive discussion of such axiomatic frameworks. An accessible introduction to
IST is Robert [16].

The theory IST includes the axioms of ZFC, so one could ask whether the dependence
on AC could be avoided by deleting AC from the axioms constituting IST. It turns out
that in the resulting theory one can still prove the existence of nonprincipal ultrafilters,
by an argument similar to the one given above for the model-theoretic approach (see
Hrbacek [9] and the paragraph following Lemma 2.5 below).

In Hrbacek and Katz [10] the authors have developed an axiomatic system for NSA
with the acronym SPOT, a subtheory of IST. The theory SPOT is a conservative
extension of ZF. This means that every statement in the ∈–language provable in
SPOT is provable already in ZF. In particular, AC and the existence of nonprincipal
ultrafilters are not provable is SPOT, because they are not provable in ZF. A stronger
theory SCOT which is a conservative extension of ZF + ADC is also considered there.
Hence proofs in SPOT are effective, and proofs in SCOT are semi-effective.

Some examples of constructions in nonstandard analysis formalized in these theories are
given in [10]. In particular, it is shown there how the Riemann integral can be defined
in SPOT using partitions into infinitesimal subintervals, and the countably additive
Lebesgue measure in SCOT using counting measures. The expository article Hrbacek
and Katz [11] presents in SCOT various nonstandard arguments related to compact
sets and continuity.

In Section 2 we state the axioms of SPOT, list some of their consequences, and prove
a stronger version of the Standard Part principle SP that is crucial in the preliminary
Section 3.

In Sections 4 - 6 we give nonstandard proofs in SPOT of the global versions of Peano’s
and Osgood’s theorems concerning the existence of solutions of ordinary differential
equations. While the nonstandard approach using Euler approximations with an
infinitesimal step that we employ is well known for local solutions (see, eg, Albeverio,
Høegh-Krohn, Fenstad, and Lindstrøm [1, page 30]), we offer three innovations:
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• The axiomatic system SPOT enables us to use infinitesimal methods without the
underlying assumption of the existence of nonprincipal ultrafilters or any other
strong form of AC.

• We construct global, ie, noncontinuable, solutions rather than local solutions.
• Traditional proofs of the existence of noncontinuable solutions typically depend

on ADC; see Remark 7.1. By contrast, our proof does not assume any form of
AC at all.

We first prove (Theorem 4.1) that every infinitesimal perturbation ε determines a unique
global solution yε (some or all of these solutions may be the same). We next prove
(Lemma 5.1) that every solution that is not global is a restriction of some yε . Hence every
solution is either global or can be extended to a global one (Corollary 5.2) and every
global solution is of the form yε for some infinitesimal perturbation ε (Theorem 5.3).
Finally we state the global Osgood’s theorem (Theorem 6.2). The proof shows first
that there is a local maximal solution (Lemma 6.5 and the last part of the sentence that
precedes it). The last paragraph of the proof obtains the global maximal solution as the
union of all local ones.

2 Theory SPOT

By an ∈–language we mean the language that contains a binary membership predicate
∈ and is enriched by defined symbols for constants, relations, functions and operations
customary in traditional mathematics. For example, it contains names N and R for the
sets of natural and real numbers; they are viewed as defined in the traditional way. (N
is the least inductive set, R is defined in terms of Dedekind cuts or Cauchy sequences.)
The symbols <,+ and × denote the ordering, addition and multiplication of real
numbers, and so on without further explanation. The classical theories ZF and ZFC
are formulated in the ∈–language.

The language of SPOT contains an additional unary predicate st. SPOT is a subtheory
of IST and its bounded version BST (see [13]). We use ∀ and ∃ as quantifiers over sets
and ∀st and ∃st as quantifiers over standard sets. The theory SPOT has the following
axioms.

ZF (Zermelo - Fraenkel Set Theory)

T (Transfer) Let ϕ be an ∈–formula with standard parameters. Then:

∀stx ϕ(x)→ ∀x ϕ(x)

O (Nontriviality) ∃ν ∈ N ∀stn ∈ N (n ̸= ν)
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SP′ (Standard Part)

∀A ⊆ N ∃stB ⊆ N ∀stn ∈ N (n ∈ B←→ n ∈ A)

The theory SPOT proves the following results (see [10]).

Lemma 2.1 Standard natural numbers precede all nonstandard ones:

∀stn ∈ N ∀m ∈ N (m < n→ st(m))

Note that {0, 1, . . . , n− 1} is a finite set for every n ∈ N; it is nonstandard when n is
nonstandard.

Lemma 2.2 (Countable Idealization) Let ϕ be an ∈–formula with arbitrary parame-
ters.

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → ϕ(m, x))←→ ∃x ∀stn ∈ N ϕ(n, x)

The dual form of Countable Idealization is:

∃stn ∈ N ∀x ∃m ∈ N (m ≤ n ∧ ϕ(m, x))←→ ∀x ∃stn ∈ N ϕ(n, x)

Countable Idealization easily implies the following more familiar form. We use ∀st fin

and ∃st fin as quantifiers over standard finite sets.

Corollary 2.3 Let ϕ be an ∈–formula with arbitrary parameters. For every standard
countable set A:

∀st fina ⊆ A ∃x ∀y ∈ a ϕ(x, y)←→ ∃x ∀sty ∈ A ϕ(x, y)

The axiom SP′ is often stated and used in the form

(SP) ∀x ∈ R
(
x limited → ∃str ∈ R (x ≈ r)

)
where x is limited iff |x| ≤ n for some standard n ∈ N, and x ≈ r iff |x− r| ≤ 1/n for
all standard n ∈ N, n ̸= 0; x is infinitesimal if x ≈ 0 ∧ x ̸= 0. The unique standard
real number r in SP is called the standard part of x or the shadow of x; notation
r = sh(x).

We have the following equivalence.

Lemma 2.4 The statements SP′ and SP are equivalent (over the theory ZF + O + T).
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SP′ can also be reformulated as an axiom schema (Countable Standardization for
∈–formulas):

(SP′′)
Let ϕ be an ∈–formula with arbitrary parameters. Then

∃stS ∀stn (n ∈ S←→ n ∈ N ∧ ϕ(n)).

Lemma 2.5 The statement SP′ and the schema SP′′ are equivalent (over the theory
ZF + O + T).

Proof Apply SP′ to the set A = {n ∈ N | ϕ(n)} (A exists because ϕ is an ∈–
formula).

Standardization in full strength, as postulated in IST, BST, etc., implies the existence
of nonprincipal ultrafilters over N: take a nonstandard ν ∈ N and let U be the standard
subset of P(N) such that ∀stX ⊆ N (X ∈ U ←→ ν ∈ X). Nonetheless, two important
special cases of Standardization can be proved in SPOT.

The scope of Countable Standardization can be expanded to a larger class of formulas.

Definition 2.6 An st-∈–formula Φ(v1, . . . , vr) is st-prenex if it is of the form

Qstu1 . . .Q
stus ψ(u1, . . . , us, v1, . . . , vr)

where ψ is an ∈–formula and each Q stands for ∃ or ∀.

In other words, all occurrences of ∀st or ∃st in Φ appear before all occurrences of ∀ or
∃.

We use ∀st
N u . . . and ∃st

N u . . . as quantifiers over standard natural numbers, ie as
shorthand for (respectively) ∀u (u ∈ N ∧ st(u)→ . . .) and ∃u (u ∈ N ∧ st(u) ∧ . . .).

An stN -prenex formula is a formula of the form

Qst
Nu1 . . .Q

st
Nus ψ(u1, . . . us, v1, . . . , vr)

where ψ is an ∈–formula.

The theory SPOT proves the following stronger version of Countable Standardization
that is used repeatedly in this paper.

Proposition 2.7 (Countable Standardization for stN–prenex formulas) Let Φ be an
stN–prenex formula with arbitrary parameters. Then:

∃stS ∀stn (n ∈ S←→ n ∈ N ∧ Φ(n))
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Of course, N can be replaced by any standard countable set.

Proof We give the argument for a typical case

∀st
Nu1 ∃st

Nu2 ∀st
Nu3 ψ(u1, u2, u3, v).

By SP′′ there is a standard set R such that for all standard n1, n2, n3, n

⟨n1, n2, n3, n⟩ ∈ R←→ ⟨n1, n2, n3, n⟩ ∈ N4 ∧ ψ(n1, n2, n3, n).

We let Rn1,n2,n3 = {n ∈ N | ⟨n1, n2, n3, n⟩ ∈ R} and

S =
⋂

n1∈N

⋃
n2∈N

⋂
n3∈N

Rn1,n2,n3 .

Then S is standard and for all standard n:

n ∈ S←→ ∀n1 ∈ N ∃n2 ∈ N ∀n3 ∈ N (n ∈ Rn1,n2,n3)

←→ (by Transfer) ∀st
Nn1 ∃st

Nn2 ∀st
Nn3 (n ∈ Rn1,n2,n3)

←→ (by definition of R) ∀st
Nn1 ∃st

Nn2 ∀st
Nn3 ψ(n1, n2, n3, n)

←→ Φ(n)

The second special case of Standardization involves st–prenex formulas with only the
standard parameters.

Lemma 2.8 Let Φ(v1, . . . , vr) be an st–prenex formula with standard parameters.
Then ∀stS ∃stP ∀stv1, . . . , vr

⟨v1, . . . , vr⟩ ∈ P←→ ⟨v1, . . . , vr⟩ ∈ S ∧ Φ(v1, . . . , vr).

Proof Let Φ(v1 . . . , vr) be Qst
1 u1 . . .Q

st
s us ψ(u1, . . . , us, v1, . . . , vr) and let ϕ(v1 . . . , vr)

be Q1u1 . . .Qsus ψ(u1, . . . , us, v1, . . . , vr). Since Φ has standard parameters, the
equivalence Φ(v1 . . . , vr) ←→ ϕ(v1 . . . , vr) holds for all standard v1 . . . , vr by the
Transfer principle.

The set P = {⟨v1, . . . , vr⟩ ∈ S | ϕ(v1, . . . , vr)} exists by the Separation principle of
ZF, it is standard, and has the required property.

Remark 2.9 This result has twofold importance:
(1) The meaning of every predicate that for standard inputs is defined by an st–prenex

formula Qst
1 u1 . . .Q

st
s us ψ with standard parameters is automatically extended to

all inputs, where it is given by the ∈–formula Q1u1 . . .Qsus ψ .
(2) Standardization holds for all ∈–formulas with additional predicate symbols, as

long as all these additional predicates are defined by st–prenex formulas with
standard parameters.
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3 Two examples

Formulas that occur in practice are usually not in the st–prenex form, but they can often
be converted to it using Countable Idealization.

Definition 3.1 (Integral of continuous functions) We fix a positive infinitesimal h
and the corresponding “hyperfinite line” {xi | i ∈ Z} where xi = i · h. Let f be a
standard real-valued function continuous on the standard interval [a, b]. Let ia, ib be
such that ia · h− h < a ≤ ia · h and ib · h < b ≤ ib · h + h. We define:

(3–1)
∫ b

a
f (x) dx = sh

(
Σib

i=ia f (xi) · h
)

It is easy to show that the value of the integral does not depend on the choice of h.

Lemma 3.2 There is an stN–prenex formula Φ(v1, v2, v3, v4) such that
∫ b

a f (x) dx =

r ←→ Φ( f , a, b, r) holds for all standard f , a, b, r .

Proof For standard f , a, b, r we have
∫ b

a f (x) dx = r iff:

∀h
[
∀st
Nn (|h| < 1

n )→ ∀st
Nm

(
|Σib

i=ia f (xi) · h− r| < 1
m

)]
(It is understood that h, n, m are not 0). This expression can be rewritten as:

∀h ∀st
Nm ∃st

Nn
[
|h| ≥ 1

n ∨ |Σ
ib
i=ia f (xi) · h− r| < 1

m

]
We swap the outmost universal quantifiers and apply the dual version of Countable
Idealization (Lemma 2.2) to get

∀st
Nm ∃st

Nn ∀h ∃k ≤ n
[
|h| ≥ 1

k ∨ |Σ
ib
i=ia f (xi) · h− r| < 1

m

]
which is an stN–prenex formula, clearly equivalent to

∀st
Nm ∃st

Nn∀h
[
|h| ≥ 1

n ∨ |Σ
ib
i=ia f (xi) · h− r| < 1

m

]
.

One can now use Standardization for st–prenex formulas with standard parameters to
conclude that, for example, for every standard f , a there exists a standard function F
such that F(z) =

∫ z
a f (x) dx for all standard z ∈ [a, b]. By Remark 2.9 (1), the last

equation holds for all z ∈ [a, b]. Of course, the usual arguments show that the above
definition of the integral agrees with the traditional ϵ-δ one for all standard f , a, b, r .

The following observation is crucial for the proof of Proposition 3.6.
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Lemma 3.3 Let w be a function, dom w = Dw ⊆ R and ran w ⊆ R. Then the formula

Ψ(x, y) : ∃α ∈ Dw [x ≈ α ∧ (y ≈ w(α) ∨ y ≥ w(α))]

is equivalent to an stN–prenex formula (with the parameter w).

Proof The formula Ψ(x, y) can be written as

∃α ∈ Dw [∀st
Ni (|x− α| < 1

i+1 ) ∧ (∀st
Nj (|y− w(α)| < 1

j+1 ) ∨ y ≥ w(α))]

which is equivalent to:

∃α ∈ Dw ∀st
Ni ∀st

Nj [(|x− α| < 1
i+1 ) ∧ (|y− w(α)| < 1

j+1 ∨ y ≥ w(α))]

This is equivalent to

∃α ∈ Dw ∀st
Nn [(|x− α| < 1

n+1 ) ∧ (|y− w(α)| < 1
n+1 ∨ y ≥ w(α))]

(let n = min {i, j}), and finally (Countable Idealization, Lemma 2.2) to the stN–prenex
formula:

∀st
Nn ∃α ∈ Dw ∀m ≤ n [(|x− α| < 1

m+1 ) ∧ (|y− w(α)| < 1
m+1 ∨ y ≥ w(α))]

The last formula of course simplifies to:

∀st
Nn∃α ∈ Dw [(|x− α| < 1

n+1 ) ∧ (|y− w(α)| < 1
n+1 ∨ y ≥ w(α))]

Definition 3.4 Let w be a function, dom w = Dw ⊆ I where I ⊆ R is a standard
interval, and ran w ⊆ R.

• The function w is densely defined on I if for every standard x ∈ I there is α ∈ Dw

such that α ≈ x .
• The function w is (uniformly) S–continuous if for α, β ∈ Dw , α ≈ β implies

w(α) ≈ w(β).

Lemma 3.5 A function w is S–continuous iff for every standard ϵ > 0 there is a
standard δ > 0 such that for α, β ∈ Dw , |α− β| < δ implies |w(α)− w(β)| < ϵ.

Proof The usual arguments work in SPOT; see eg Hrbacek and Katz [11].

The next proposition follows immediately from the Standardization principle of IST or
BST, but to prove it in SPOT we need to consider an approximation to the set W on the
rationals, to which we can apply Countable Standardization for stN–prenex formulas.
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Proposition 3.6 If w is S–continuous and densely defined on I , then there is a standard
function W such that, for all standard x, y ∈ R, ⟨x, y⟩ ∈ W if and only if x ≈ α and
y ≈ w(α) for some α ∈ Dw .

The proof of Proposition 3.6 appears below, following the proof of Lemma 3.8.

Definition 3.7 The existence of the standard set

Z = st{⟨q, r⟩ ∈ (I ∩Q)×Q | ∃α ∈ Dw [q ≈ α ∧ (r ≈ w(α) ∨ r ≥ w(α)]}

is justified in Lemma 3.3.

For q ∈ I ∩Q let Zq = {r ∈ Q | ⟨q, r⟩ ∈ Z} and W0(q) = inf Zq , if it exists (it can
happen that Zq = ∅ or Zq = Q, in which cases W0(q) is undefined). Finally, let W
be the closure of (the graph of) W0 . We show below that the standard set W has the
property from Proposition 3.6.

Lemma 3.8 If q ∈ I ∩ Q is standard, then q ∈ dom W0 if and only if there exists
α ∈ Dw such that α ≈ q and w(α) is limited. If this is the case, then W0(q) = sh(w(α)).

Proof If α, β ∈ Dw , q ≈ α and q ≈ β , then w(α) ≈ w(β), so we have Zq = st{r ∈
Q | r ≈ w(α) ∨ r ≥ w(α)}, independently of the choice of α . If w(α) is limited,
then inf Zq = sh(w(α)). If w(α) is unlimited, then Zq = ∅ or Zq = Q, so W0(q) is
undefined.

Proof of Proposition 3.6 Assume that x ≈ α and y ≈ w(α) for α ∈ Dw . Given any
standard ϵ > 0, take a standard δ > 0 witnessing S-continuity of w, a standard q ∈ Q∩I
such that |x− q| < min{δ, ϵ} and some β ≈ q, β ∈ Dw . Then |α− β| < δ , and hence
|w(α)− w(β)| < ϵ. It follows that w(β) is limited. By Lemma 3.8, w(β) ≈ W0(q), so
|x− q| < ϵ and |y−W0(q)| < ϵ. This shows that ⟨x, y⟩ ∈ W .

Conversely, if ⟨x, y⟩ ∈ W , then for every standard ϵ > 0 there is q ∈ dom W0 such that
|x− q| < ϵ and |y−W0(q)| < ϵ. Let α ∈ Dw , α ≈ q; then w(α) ≈ W0(q), |x−α| < ϵ

and |y − w(α)| < ϵ. By Countable Idealization (Lemma 2.2) there is α ∈ Dw such
that for all standard ϵ > 0 we have |x− α| < ϵ and |y− w(α)| < ϵ. Then x ≈ α and
y ≈ w(α).
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4 Peano’s Existence Theorem in SPOT

Theorem 4.1 (Global Peano’s Theorem) Let F : [0,∞)× R→ R be a continuous
function. There is an interval [0, a) with 0 < a ≤ ∞ and a function y : [0, a) → R
such that

(∗) y(0) = 0, y′(x) = F(x, y(x))

holds for all x ∈ [0, a), and if a ∈ R then limx→a− y(x) = ±∞.

Here and elsewhere, if c ∈ R is an endpoint of an interval I = dom y, y′(c) is the
appropriate one-sided derivative of y at c. We call a solution of the initial value problem
(∗) that cannot be continued to any interval [0, a′) with a′ > a a global solution.

We generalize the familiar construction of Euler approximations with an infinitesimal
step by allowing infinitesimal perturbations. This is a variation on an idea in Birkeland
and Normann [2] (the main difference being that we perturb the construction of the
solution, while Birkeland and Normann perturb the function F ).

We will prove the theorem for standard F ; the stated result follows by Transfer. The
construction proceeds as follows.

Let N be a positive unlimited integer and h = 1/N . We fix x0 ≥ 0, x0 ≈ 0, y0 ≈ 0,
and let xk = x0 + k · h for k = 0, . . . ,N2 .

Definition 4.2 An infinitesimal perturbation is a sequence ε = ⟨εk | k < N2⟩ such
that each εk ≈ 0; we let ε = max{|εk| | k < N2}.

The concept is not needed for the proof of Theorem 4.1, where the simplest choice
εk = 0 for all k suffices, but it is used for its generalization in Section 5.

We define yk recursively:

yk+1 = yk + (F(xk, yk) + εk) · h for k < N2

Observe that:

yℓ = yk +

ℓ−1∑
i=k

(F(xi, yi) + εi) · h, for any k < ℓ ≤ N2

We next define:

(∗∗) Y = st{⟨x, y⟩ ∈ [0,∞)× R | x ≈ xk ∧ y ≈ yk for some k < N2}

The existence of Y in SPOT follows from Proposition 3.6 (let I = [0,∞) and
w(xk) = yk for 0 ≤ k < N2 ). The strategy for the rest of the proof is to show thatY
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is a (graph of) a continuous function defined on an open subset of [0,∞), and the
restriction y of Y to the connected component of its domain containing 0 has the
required properties.

Lemma 4.3 Let ⟨x, y⟩ ∈ [0,∞) × R be standard and xp − h < x ≤ xp , y ≈ yp for
some p < N2 . There exist standard d, e,M > 0 such that yk ∈ [y− d, y + d] for all
xk ∈ [x, x+ e) and |yk− yℓ| ≤ (M + ε) · |xk− xℓ| for all xk, xℓ ∈ [x, x+ e). In particular,
if xk ≈ xℓ ≈ x then yk ≈ yℓ .

If x > 0 then [x, x + e) can be replaced by (x− e, x + e).

Proof By continuity of F at ⟨x, y⟩ there exist standard c, d,M > 0 such that |F(t, s)| ≤
M holds for all ⟨t, s⟩ ∈ [x, x + c]× [y− d, y + d]; if x > 0,we can assume also c ≤ x .
Fix a standard e such that 0 < e < min{c, d/(M + 1)}.

We prove by induction on k that

k ≥ p ∧ xk < x + e→ |yk − yp| ≤ (M + ε) · |xk − xp|.

The case k = p is clear. If the claim is true for k and xk+1 < x+ e, we have |yk− yp| ≤
(M+ε)·|xk−xp| < (M+1)·e ≤ d and hence the point ⟨xk, yk⟩ ∈ [x, x+c]×[y−d, y+d].
Now |F(xk, yk)| ≤ M , so |yk+1 − yk| ≤ (|F(xk, yk)|+ |εk|) · h ≤ (M + ε) · h and:

|yk+1 − yp| ≤ |yk+1 − yk|+ |yk − yp|
≤ (M + ε) · h + (M + ε) · |xk − xp|
= (M + ε) · |xk+1 − xp|

Finally, |yℓ − yk| ≤
∑ℓ−1

i=k (|F(xi, yi)|+ ε) · h ≤ (M + ε) · |xℓ − xk|.

If x > 0, a symmetric “backward” argument shows that the statement holds also on the
interval (x− e, x].

It follows easily that Y as in (∗∗) is the graph of a real function. If ⟨x, y1⟩, ⟨x, y2⟩ ∈ Y
are standard, then there are k and ℓ such that ⟨x, y1⟩ ≈ ⟨xk, yk⟩ and ⟨x, y2⟩ ≈ ⟨xℓ, yℓ⟩.
Then xk ≈ xℓ ≈ x and y1 ≈ yk ≈ yℓ ≈ y2 and we conclude that y1 = y2 . Hence Y is
the graph of a function, by Transfer. From now on we write Y(x) for the value of Y at
x ∈ dom Y .

Lemma 4.4 The domain of the function Y is an open subset of [0,∞) containing 0,
Y is continuous on dom Y , and Y ′(x) = F(x,Y(x)) holds for x ∈ dom Y .
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Proof Clearly 0 ∈ dom Y . If x ∈ dom Y is standard and y = Y(x), Lemma 4.3 gives
an interval I = (x− e, x+ e) (or I = [0, e)) such that xk ∈ I implies yk ∈ [y− d, y+ d],
hence yk is limited and Y(sh(xk)) = sh(yk) is defined. If u ∈ I is standard, u = sh(xk)
holds for some xk ∈ I . Hence Y(u) ∈ [y− d, y + d] is defined for all standard u ∈ I ,
and by Transfer, the same holds for all u ∈ I .

For the proof of continuity at a standard x ∈ dom Y let I be as above, ϵ > 0 be
standard and δ = ϵ/(M + 1). If z ∈ I is standard and |x − z| < δ , then there are k
and ℓ such that x ≈ xk and z ≈ xℓ ; moreover, Y(x) ≈ yk and Y(z) ≈ yℓ . We have
|Y(x)−Y(z)| ≈ |yℓ−yk| and |yk−yℓ| ≤ (M+ε) · |xk−xℓ|, where |xℓ−xk| ≈ |x−z| < δ .
It follows that |Y(x)− Y(z)| ≤ (M + 1) · δ = ϵ. As usual, Transfer gives continuity for
all x ∈ dom Y .

It remains to prove that Y ′(x) = F(x,Y(x)) holds for x ∈ dom Y . Let I be as above,
x, z ∈ I be standard and without loss of generality x ≤ z. In the notation of the previous
paragraph, we have

(1) Y(z)− Y(x) ≈ yℓ − yk =
ℓ−1∑
i=k

(F(xi, yi) + εi) · h

and

(2)
∫ z

x
F(t,Y(t)) dt ≈

ℓ−1∑
i=k

F(xi,Y(xi)) · h =
ℓ−1∑
i=k

(F(xi, yi) + δi) · h

where δi ≈ 0 for k ≤ i < ℓ. The relation ≈ in (2) follows from the nonstandard
theory of integration (see Definition 3.1) and the fact that F(t,Y(t)) is continuous on
I . The relation = in (2) is justified as follows: Let x∗ = sh(xi) and y∗ = sh(yi); then
Y(x∗) ≈ y∗ by the definition of Y and Y(xi) ≈ Y(x∗) by the continuity of Y . The
continuity of F then gives F(xi, yi) ≈ F(x∗, y∗) ≈ F(xi,Y(xi)).

The formulas (1) and (2) imply Y(z) − Y(x) ≈
∫ z

x F(t,Y(t)) dt , hence Y(z) − Y(x) =∫ z
x F(t, Y(t)) dt as both sides are standard. By Transfer, the relationship holds for all x ,

z ∈ I . It remains to apply the Fundamental Theorem of Calculus.

Let [0, a), a > 0, be the connected component of the domain of Y containing 0.

Lemma 4.5 The function Y satisfies limx→a− Y(x) = ±∞.

Proof We prove that for every standard r > 0 there is a standard ϵ > 0 such that for
all standard x , a− ϵ < x < a implies |y(x)| ≥ r .
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Assume that the statement is false and fix a standard r > 0 such that for every standard
n ∈ N there is a standard x ∈ (a − 1

n , a) such that Y(x) ∈ (−r, r). Hence for every
standard n ∈ N there is k < N2 such that xk ∈ (a − 1

n , a) and yk ∈ (−r, r) (take
⟨xk, yk⟩ ≈ ⟨x,Y(x)⟩). By Countable Idealization (Lemma 2.2), there exists p < N2

such that yp ∈ (−r, r) and xp ∈ (a − 1
n , a) holds for all standard n > 0. It follows

that xp ≈ a; we let b = sh(yp). By the definition of Y then ⟨a, b⟩ ∈ Y , and hence
a ∈ dom Y , contradicting the fact that [0, a) is a connected component of the domain
of Y .

Conclusion of proof of Theorem 4.1 Let Y be the function defined by formula (∗∗).
The proof of Theorem 4.1 is now concluded by letting y = Y ↾ [0, a). We write yε
when it is necessary to indicate the dependence of y on the perturbation ε.

Remark 4.6 Note that the solution y is determined by the choice of the starting point
x0 , y0 and the infinitesimal perturbation ε. Thus we can single out a particular global
solution of (∗) by fixing N and letting x0 = 0, y0 = 0 and εk = 0 for all k < N2 .

Remark 4.7 There are obvious generalizations that do not require any additional
nonstandard ideas. For example, the two-sided version:

Let F : R2 → R be a continuous function. For every ⟨a, b⟩ ∈ R2 there is an interval
(a−, a+) with −∞ ≤ a−< a < a+≤ ∞ and a function y : (a−, a+)→ R such that

y(a) = b, y′(x) = F(x, y(x)) holds for all x ∈ (a−, a+),

and if a− and/or a+ is in R, then limx→(a−)+ y(x) = ±∞ and/or limx→(a+)− y(x) =
±∞.

The domain R2 of F can be replaced by an open set D ⊆ R2 . One obtains a solution
that tends to the boundary of D, in the sense that for every compact K ⊆ D there is
c < a+ such that y(x) /∈ K holds for all c < x < a+ , and analogously for a−.

The method generalizes to systems of equations.

Theorem 4.8 Let F : D→ Rn be continuous on an open set D ⊆ Rn+1 and ⟨0, 0⟩ ∈ D.
The initial value problem

(⋆) y(0) = 0, y′(x) = F(x, y(x))

has a noncontinuable solution.

Proof For u = ⟨u0, . . . , un−1⟩ and v = ⟨v0, . . . , vn−1⟩ in Rn we let u ≈ v if ui ≈ vi

for all i < n, and u ≥ v if ui ≥ vi for all i < n. With this understanding, the material in
Section 3, and in particular Proposition 3.6, generalizes straightforwardly to functions
w with ran w ⊆ Rn . One can then follow the proof of Theorem 4.1.

Journal of Logic & Analysis 15:6 (2023)



14 K Hrbacek and M Katz

5 Applications of infinitesimal perturbations

Recall (see the conclusion of the proof of Theorem 4.1) that yε is a standard function
defined via (∗∗).

Lemma 5.1 Let F be standard. For every standard solution y of (∗) defined on a
standard interval [0, a) and every standard c < a, c > 0, there is an infinitesimal
perturbation ε such that y(x) = yε(x) holds for 0 ≤ x ≤ c.

Proof By the mean value theorem, for each k such that xk+1 ≤ c there is t ∈ [xk, xk+1]
such that y(xk+1) − y(xk) = y′(t) · h. Let tk be the least such t (as y′ is continuous,
the set of t with this property is closed). Then let εk = F(tk, y(tk)) − F(xk, y(xk)) =
y′(tk) − y′(xk) ≈ 0. For xk+1 > c let εk = 0. Let y0 = y(0); it follows that
yk = y(xk) for all k such that xk+1 ≤ c: assuming the claim is true for k , we have
yk+1 = yk + (F(xk, yk) + εk) · h = y(xk) + F(tk, y(tk)) · h = y(xk) + y′(tk) · h = y(xk+1).

If x ∈ [0, c] is standard, take x ≈ xk for xk+1 ≤ c; then yε(x) ≈ yk = y(xk) ≈ y(x), so
yε(x) = y(x).

Corollary 5.2 Every solution of (∗) extends to a global solution.

Proof Let y defined on [0, c) be a standard solution of (∗) with F standard. If y is
not global, then it has a standard continuation ỹ to an interval [0, a) with c < a. By
Lemma 5.1 y has a continuation yε which is global by Theorem 4.1. By Transfer, the
claim holds for all solutions y and all functions F .

Theorem 5.3 For every standard global solution y of (∗) there is an infinitesimal
perturbation ε such that y = yε .

Proof Assume the domain of y is a standard interval [0, a) (possibly a = +∞).
We fix a standard strictly increasing sequence ⟨cn | n ∈ N⟩ such that c0 > 0 and
limn→∞ cn = a. The proof of Lemma 5.1 (with c = cn ) justifies the following statement.
For every standard n ∈ N there is ε = ⟨εk | 0 ≤ k < N2⟩ such that for all m ≤ n and
for all k < N2 :(

xk+1 ≤ cm → εk = y′(tk)− y′(xk)
)
∧

(
xk+1 > cm → |εk| < 1

m+1

)
.

By Countable Idealization (Lemma 2.2) there is ε such that for all standard n ∈ N and
for all k < N2 :(

xk+1 ≤ cn → εk = y′(tk)− y′(xk)
)
∧

(
xk+1 > cn → |εk| < 1

n+1

)
Journal of Logic & Analysis 15:6 (2023)
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It follows that εk ≈ 0 for all k < N2 , so ε is a perturbation. As in the proof of
Lemma 5.1, y(x) = yε(x) holds for every standard x ∈ [0, cn], for every standard n ∈ N,
hence y(x) = yε(x) holds for every standard x ∈ [0, a). By Transfer, y(x) = yε(x) for
all x ∈ [0, a).

The results of this section generalize to the system of equations (⋆).

6 Osgood’s Theorem in SPOT

Definition 6.1 A solution ỹ of (∗) defined on an interval I is maximal on I if ỹ(x) ≥ y(x)
holds for every solution y of (∗) and every x ∈ I ∩ dom y. The solution ỹ is maximal if
it is global and maximal on its domain.

Theorem 6.2 (Global Osgood’s Theorem) The initial value problem (∗) has a unique
maximal solution.

Proof We assume that F is standard, fix an infinitesimal ε > 0 and consider the initial
value problem

(∗∗∗) z(0) = 0, z′(x) = F(x, z(x)) + ε.

Lemma 6.3 There exist standard e,M > 0 such that, for the intervals I = [0, e] and
J = [−(M + 1) · e, (M + 1) · e], the function F + ε is bounded by M on I × J and the
initial value problem (∗∗∗) has a solution u : I → J .

Proof of Lemma 6.3 The arguments given in the proof of Theorem 4.1 establish the
following uniform result:

Given standard c, d,M > 0 there is a standard e > 0 such that for every standard G,
continuous and bounded by M on [0, c) × [−d, d], there is a solution y : [0, e] →
[−(M + 1) · e, (M + 1) · e] of the initial value problem y(0) = 0, y′(x) = G(x, y(x)). By
Transfer, the result holds for all such functions G.

Returning to (∗∗∗), fix standard c, d,M0 > 0 so that F is bounded by M0 on
[0, c) × [−d, d]. Let G = F + ε and M = M0 + 1. The paragraph above gives the
desired solution u.

Lemma 6.4 Let u be the solution of the initial value problem (∗∗∗) furnished by
Lemma 6.3 and let y(0) = 0 and y′(x) = F(x, y(x)) for all x ∈ [0, a). Then u(x) ≥ y(x)
holds for all x ∈ [0,min{e, a}).
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Proof of Lemma 6.4 Let

α = sup{α′ | u(x) ≥ y(x) holds for all 0 ≤ x ≤ α′}

and assume α < min{e, a}. Then u(α) ≥ y(α) and u′(α)− y′(α) = ε > 0. It follows
that u(x) > y(x) holds on some interval (α, α′] for α′ > α , a contradiction.

We next prove the existence of a local maximal solution. We let:

ym(x) = st{sh(u(x)) | x ∈ [0, e]}

The existence of the standard function ym defined on [0, e] in SPOT follows from
Proposition 3.6 (with I = [0, e] and w = u), using the observation that u is S–continuous:
|x−z| ≈ 0 implies |u(x)−u(z)| = |u′(t)|·|x−z| = |F(t, u(t))+ε|·|x−z| ≤ M ·|x−z| ≈ 0
(where t is between x, z ∈ I ).

If y is a standard solution of (∗), then ym(x) = sh(u(x)) ≥ sh y(x)) = y(x) holds for all
standard x ∈ [0,min{e, a}) by Lemma 6.4, so ym dominates all standard solutions of
(∗).

Lemma 6.5 The function ym is a solution of (∗) on [0, e].

Proof of Lemma 6.5 To this effect it suffices to find an infinitesimal perturbation ε

such that ym = yε on [0, e].

As in the proof of Theorem 5.1, for each k with xk+1 ≤ e let tk be the least t ∈ [xk, xk+1]
such that u(xk+1)−u(xk) = u′(t)·h. Then let εk = F(tk, u(tk))−F(xk, u(xk)); if xk+1 > e
let εk = 0.

Let y0 = u(0) = 0. If yk = u(xk), then:

yk+1 = yk + (F(xk, yk) + εk) · h
= u(xk) + F(tk, u(tk)) · h
= u(xk) + u′(tk) · h = u(xk+1)

It follows that yk = u(xk) for all k such that xk+1 ≤ e.

We still have to show that εk ≈ 0. The function u is S–continuous: x, z ∈ [0, e] and
x ≈ z imply:

|u(x)− u(z)| ≤
∣∣∣ ∫ x

z
(F(t, u(t)) + ε) dt

∣∣∣ ≤ M · |x− z| ≈ 0

So tk ≈ xk implies u(tk) ≈ u(xk) and F(tk, u(tk)) ≈ F(xk, u(xk)), because F is continuous
at ⟨sh(xk), sh(u(xk))⟩.

For standard x ∈ [0, e] take x ≈ xk ; we have ym(x) = sh(u(x)) = sh(u(xk)) = sh(yk) =
yε(x). By Transfer, ym(x) = yε(x) holds for all x ∈ [0, e].
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The above argument establishes the existence of a solution ym which is maximal over
some interval [0, e). The maximal solution ymax is obtained as the union of all such
solutions; it is defined and maximal on some interval I . It remains to prove that
I = [0, a) (with 0 < a ≤ +∞) and that ymax is global. If I = [0, a] for a ∈ R, we
could apply the above argument to the initial value ⟨a, ymax(a)⟩ and obtain a continuation
of ymax that is defined and maximal on a larger interval. Similarly, if ymax could be
continued to some (non-maximal) standard solution y, then we could apply the above
argument to the initial value ⟨a, y(a)⟩.
This concludes the proof of Theorem 6.2 for standard F . By Transfer, the theorem is
true for all F .

7 Final Remarks.

Remark 7.1 The proofs of the global Peano theorem we found in the literature often
simply appeal to Zorn’s lemma (eg Ganesh [3], Theorem 4.7). The more careful proofs
depend on ADC, usually without mentioning it explicitly. Hale [4] in his proof of
global Peano theorem (Theorem 2.1, page 17) writes:

“. . . there is a monotone increasing sequence {bn} constructed as above so that
the solution x(t) of (1.1) on [a, b] has an extension to the interval [a, bn] and
(bn, x(bn)) is not in V̄n . Since the bn are bounded above, let ω = limn→∞ bn . It
is clear that x has been extended to the interval [a, ω) . . . ”

What is actually clear is that his construction yields solutions xn(t) on [a, bn] for
each n, and each xn(t) has extensions to some xn+1(t). The axiom ADC is needed
to justify the existence of x(t). Similarly Hartman [6, II, 3.1, page 13] constructs
an increasing sequence {bn} such that any solution on [a, bn] has an extension to a
solution on [a, bn+1]. Here ADC is needed to justify the existence of a solution on
[a, ω+] for ω+ = limn→∞ bn . In Hartman’s proof of III, Lemma 2.1, a key step to
the proof of III, Theorem 2.1 (Osgood’s theorem), ACC is used implicitly to obtain
the sequence {un(t)}. Similar unacknowledged use of ADC appears in Kurzweil [14,
pages 355–356].

Remark 7.2 Simpson [17] carried out a thorough study of the axioms needed to
prove the local versions of Peano and Osgood theorems. He showed that (over RCA0 )
the local Peano theorem is equivalent to WKL0 and the local Osgood theorem is
equivalent to ACA0 (see Simpson [18] for the description of these systems of second
order arithmetic and additional information). In particular, the proofs of local versions
of these theorems do not need any form of AC.
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Remark 7.3 The conservativity of SPOT over ZF and the results of this paper imply
that global Peano and Osgood theorems are provable in ZF.

In a discussion on MathOverflow [5], James Hanson pointed out that the same conclusion
follows from Shoenfield’s absoluteness theorem. A consequence of this theorem is
that every Π1

4 sentence provable in ZFC is provable in ZF alone. The global Peano
theorem can be expressed by a Π1

4 sentence, and therefore it is provable in ZF. The ZF
proof obtained by conversion of the ZFC proof by this method is far from elementary;
in addition to Shoenfield’s absoluteness theorem, it relies on the notion of relatively
constructible sets.

Clarification of a point in [10]. In Section 4 of [10], M-generic filters on a forcing
notion P ∈M are defined (see Definition 4.10). Following a paragraph that explains
how such filters are constructed, it is stated that “M–generic filters G ⊆ M ×M on
H are defined and constructed analogously.” There is a difference though, in that the
forcing notion H is a proper class from the point of view of M. The M–generic filters
G ⊆ M ×M on H have to meet every class D ⊆ M which is definable in M (with
parameters from M ) and dense in H. As there are only countably many such classes,
the construction of a generic filter on H can proceed analogously to the construction of
a generic filter on P.
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