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Abstract: This paper investigates the absolute values on Z valued in the upper
reals (ie reals for which only a right Dedekind section is given). These necessarily
include multiplicative seminorms corresponding to the finite prime fields Fp . As
an Ostrowski-type theorem, the space of such absolute values is homeomorphic to
a space of prime ideals (with co-Zariski topology) suitably paired with upper reals
in the range [−∞, 1], and from this the standard Ostrowski’s Theorem for absolute
values on Q is recovered.

Our approach is fully constructive, using (in the topos-theoretic sense) geometric
reasoning with point-free spaces, and that calls for a careful distinction between
Dedekinds versus upper reals. This forces attention on topological subtleties that
are obscured in the classical treatment. In particular, the admission of multiplicative
seminorms points to connections with Berkovich and adic spectra. The results are
also intended to contribute to characterising a (point-free) space of places of Q .
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Classically, an absolute value on Q is defined as a multiplicative norm | · | : Q→ [0,∞),
and we have a complete classification of all such absolute values via Ostrowski’s
Theorem: up to equivalence, they are all either Euclidean, or p–adic, or trivial. On a
basic level, this paper can be read as just a piece of constructive mathematics. Our work
involves sharpening Ostrowski’s Theorem in various sensible ways – eg by rephrasing
Ostrowski’s Theorem as a representation result (instead of just a classification result),
or by adhering to an inherently topological sense of geometric reasoning (instead of
working classically), extending previous work by the authors [12].

However, rather more interestingly, our investigations also bring to light a subtle
connection between topology and algebra previously elided by classical assumptions,
raising challenging implications for the foundations of arithmetic geometry.
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2 Ming Ng and Steven Vickers

Let us elaborate. First, geometric mathematics presents us with various classically
equivalent but constructively inequivalent notions of the reals. As such, there exists
several options for reworking the notion of an absolute value geometrically – eg should
the map be valued in Dedekinds or one-sided reals (see Section 1.2)? Further, since
| · | : Q→ [0,∞) is determined by its values on the integers, one may also define an
absolute value as a map from either Z or Q. This selection of topological and algebraic
options have a curious interaction, which we summarise in the following observation.

Observation 0.1
(i) An absolute value on Q (or indeed any field) must be valued in Dedekinds, and

not the one-sideds.
(ii) An absolute value on Z can be valued in the one-sided reals.

The justification for this will be seen in Proposition 2.10, after the relevant definitions
have been introduced. For now, the statement of Observation 0.1 sets the scope for our
present task: work towards an explicit description of the space of absolute values, first
by proving a modified version of Ostrowski’s theorem for upper-valued absolute values
on Z,

| · | : Z→←−−−[0,∞)

before recovering the standard Ostrowski’s Theorem for absolute values on Q.

Before proceeding, a few obligatory remarks regarding motivation. The decision
to use upper reals rather than Dedekinds may strike the lay reader as constructivist
hair-splitting, but in fact it ties together two a priori unrelated mathematical threads:

(a) Vickers [13]: To provide a geometric account of the completions of a (generalised)
metric space, it suffices for the metric to be valued in non-negative upper reals
(as opposed to the Dedekinds).

(b) Berkovich [1]: For a suitable1 field K , every point x of the Berkovich affine line
A1

Berk corresponds to a nested descending sequence of closed discs in K :

D1 ⊇ D2 ⊇ . . .
This connection is made precise in a forthcoming paper by the first author [11], which
gives an example of how the structural gap between trivially versus non-trivially valued
fields in Berkovich geometry can (surprisingly) be eliminated via point-free techniques.2

1By suitable, let us mean: non-Archimedean, non-trivially valued, algebraically closed and
complete.

2The reader familiar with Berkovich geometry should notice the suggestive parallel between
“a point of A1

Berk = a nested sequence of discs” and “a point of the upper reals = a rounded
ideal” (see eg [12, Remark 1.30]).
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 3

There is a more fundamental question: why even rework these algebraic ideas geomet-
rically in the first place? Our answer lies in our wish to exploit the tight connections
between geometric logic and toposes. A key structure theorem in topos theory tells
us that the models of any geometric theory are classified by some topos, and that any
topos classifies the models of some geometric theory.3 In other words, if absolute
values can be described as models of some geometric theory, then we have at our
disposal a deep collection of topos-theoretic tools that allows us to extract topological
information from our logical setup. This insight has been developed in the first author’s
PhD thesis [10], which utilised descent techniques to reveal some striking differences
between the Archimedean versus non-Archimedean places of Q. Again, the upper reals
play a key role here, and their presence raises challenging questions regarding certain
longstanding assumptions in number theory.

M.N. was partially supported by EPSRC Grant EP/V028812/1 and a FY2024 JSPS
Postdoctoral Fellowship (Short-Term). We thank the referee for careful reading and
thoughtful comments on the manuscript.

1 Preliminaries

Methodologically, the present paper is an exercise in (localic) point-free analysis,
developed using techniques of geometric logic.

Already in Ng–Vickers [12] we have described those techniques and used them to
construct real exponentiation and logarithms, so for a detailed introduction we shall
refer the reader to that paper and to other references mentioned there. For the present
we shall content ourselves with noting the more prominent oddities that might otherwise
distract the reader.

1.1 Point-free topological spaces

For us, geometric mathematics is a particular regime of constructive mathematics tied
to the (logical) perspective that a topos can be regarded as a “point-free space” in the
following sense:

3Technically: “topos” here means a Grothendieck topos, ie a bounded S -topos where the
fixed base S can be any elementary topos with natural numbers object.
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4 Ming Ng and Steven Vickers

Definition 1.1 A (point-free) space is described by a geometric theory T, whose
models are the points of the space. We write [T] for the space of models of T.

A map f : X → Y is defined by a geometric construction of points f (x) ∈ Y out of
points x ∈ X .

Remark 1.2 (“Point-free”) There are various understandings of the phrase “point-free
space” in the literature (eg locales, formal topologies, etc.), but we believe they can
be subsumed by our definition – see eg Vickers [15] for details. Our terminological
aim here is a wholesale repurposing of topological language to cover not only locales
and locale maps (in the style of Joyal and Tierney [8]) but also toposes and geometric
morphisms.

One way to read Definition 1.1 is that it pulls the usual notion of a space away from
its underlying set theory. Points of a space are now defined as models of a theory as
opposed to elements of a set (equipped with some chosen topology); continuous maps
are now defined as geometric transformations of such models as opposed to functions
on sets that respect the chosen topology.

Note that the points (ie the models) may be sought in any Grothendieck topos. Hence [T]
is not in a literal sense the collection of all models. Rather, it is a “(pseudo-)functor of
models”, by analogy with the “functor of points” in algebraic geometry, used to replace
a set of points in situations where there are insufficient global points. (Compare this with
the definition of theory in Johnstone [6, Section B4.2].) Technically, it is represented
as the classifying topos S[T], the category of sheaves, but we make the notational
distinction so as to differentiate between maps (geometric morphisms) [T]→ [T′] and
functors S[T]→ S[T′].

Let us next define what a geometric theory is. There are various ways to do this;
compare, for example, Johnstone’s treatment in [7, Section D1.1.6] and [6, Section
B4.2.7]. We set out here some key features. For further details of our usage, see [12]
or [16].

Definition 1.3 (Geometric Theories) At its most basic, a geometric theory is a many
sorted, first-order theory. However, it possesses certain unique features as well as
restrictions in how its extralogical axioms may be expressed.

(i) There is a two-level distinction between formulae and sequents.
• A geometric formula is a logical formula built up from the symbols in

the signature and a context of finitely many free variables, using truth ⊤,
equality =, finite conjunctions ∧, arbitrary (possibly infinite) disjunctions∨

, and ∃.
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 5

• A geometric sequent is an expression of the form ∀xyz . . . (ϕ→ ψ), where
ϕ and ψ are geometric formulae in the same context {x, y, z, . . .}.

The theory’s axioms are in the form of sequents. Thus negation, implication, and
universal quantification are expressed in the theory at a single level – they cannot
be nested.

(ii) Disjunctions (but not conjunctions) are allowed to be infinite. This provides the
link with topology, with the propositional formulae (those without free variables)
corresponding to the opens. The signature of a theory supplies subbasic opens,
and for the rest the finite ∧ and the arbitrary

∨
correspond to intersections and

unions of opens.
(iii) The geometric constructions, by which maps are defined, are allowed in a theory

as sort constructors. Colimits, finite limits (note the analogy with disjunctions
and finite conjunctions) and free algebra constructions are all geometric, and
geometric constructions include the natural numbers N, the integers Z and the
rationals Q, along with their usual arithmetic structure (eg addition, multiplication,
strict order etc.).

Remark 1.4 (Subspaces) Adding extra axioms to a geometric theory T adds extra
constraints on the models, and this provides the point-free notion of subspace. Of
course, we cannot simply talk about a subset of the points. In the case when T is
propositional (ie no sorts), then the point-free space [T] corresponds to a locale, and its
subspaces correspond to sublocales.

The basic deal is that if you reason geometrically, then all your constructions are
continuous. You also find the very notion of topological space is greatly generalised,
to that of topos, and proper classes such as those of sets or rings can be described as
generalised spaces. For the purposes of the present paper, however, we shall restrict
ourselves to the category Loc of localic spaces, ie spaces of models of a theory
equivalent to a propositional one. (For more background, see eg Vickers [14] or Ng [10,
Chapter 2]).

On the other hand, the price of that deal is a greatly reduced ability to construct sets.
For instance, powersets, the real line R, and sets of functions, are all non-geometric
constructions, ie they are not geometrically definable as sets. These constructions still
enter into our geometric reasoning, but they must be described as spaces (via geometric
theories), and have intrinsic non-discrete topologies that cannot be stripped away. A
phrase “the space of ...” will presuppose the existence of some geometric theory whose
models are the “...”s.
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6 Ming Ng and Steven Vickers

Discussion 1.5 (Decidability and Topology) Let ϕ be a propositional formula (no
free variables) definable in T, and M be a model of T. Classically, the Law of Excluded
Middle ϕ∨¬ϕ automatically gives that ϕ evaluates in M as either ⊤ or ⊥. However, in
geometric logic, we are unable to even express this principle as stated (much less affirm
its validity) since our syntax lacks negation. We must therefore look for alternative
formulations.

In our setting, the validity of non-constructive principles (such as LEM) gets reframed as
a question of topology. To illustrate, suppose U is a propositional formula, written “U”
because, in point-free topology, we regard “the collection of models in [T] satisfying
U” as an open subspace of [T]. Hence, the question of whether the logical axiom

⊤ → U ∨ ¬U

holds in T should properly be understood as asking if there is an open V that is a
Boolean complement of U in [T] (ie U ∧ V → ⊥, ⊤ → U ∨ V ). We call U decidable
in this case. As we shall later see, in situations where a desired property is not decidable,
this often creates subtleties when trying to prove analogues of classical results in our
setting. On the other hand, if the relevant opens are decidable, then the definitions can
be made by case splits, U versus V . (Categorically, [T] is then a coproduct of U and
V .) For example, equality on the rationals is decidable.

More generally, we must be more careful, but it is often helpful to look at subspaces
of 1. There is a lattice of subspaces (for an account from the geometric point of view
see [15]), and there every open U of a space X (with sequent ⊤ → U ) has a closed
complement Uc , with sequent U → ⊥. This is a Boolean complement in the lattice of
subspaces. In other words, decidability of U means it is clopen, both open and closed
(because it is Vc ).

Although we cannot define maps from X by cases based on U and Uc , the following
lemma shows we can use cases to prove properties corresponding to subspaces. That’s
because if an open U and its closed complement Uc are both contained in some
subspace, then so must be their join in the subspace lattice, and that is the whole space
X . We emphasise that this does not allow us to say that every point in X is either in U
or in Uc – that may fail to be (constructively) true.

Lemma 1.6 (Case-Splitting Lemma) Consider the following cospan in Loc:

(1)
Y

X Z

i

f
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 7

where i is a subspace embedding. Further, suppose that:

• X = U∨Uc , where U is an open subspace of X and Uc is its closed complement,
with subspace embeddings i1 : U ↪→ X and i2 : Uc ↪→ X .

• There are maps f1 : U → Y and f2 : Uc → Y , with f ◦ i1 = i◦ f1 and f ◦ i2 = i◦ f2 .

Then the pullback P of the cospan in Equation (1) is isomorphic to X .

Proof We have pullbacks of spaces, so the pullback P of Diagram (1) exists:

(2)
P Y

X Z

f̂

p
⌟

i

f

Further (see eg Johnstone [5, §II.2.3]), embeddings of (localic) spaces are precisely the
regular monics in Loc. Since regular monics are preserved by pullback, this implies the
map p : P→ X of Diagram (2) is a regular monic as well. In English, this means: the
pullback P is a subspace of X .

Exploiting the universal pullback property, we obtain the following diagrams:

(3)

U

P Y

X Z

f1

i1

θ1

f̂

p
⌟

i

f

Uc

P Y

X Z

f2

i2

θ2

f̂

p
⌟

i

f

Since i1 = p ◦ θ1 and i2 = p ◦ θ2 are regular monics, this implies θ1 and θ2 are regular
monics as well, ie U and Uc are subspaces of P. Hence in the lattice of subspaces of
X , we have X = U ∨ Uc ≤ P, so p is an isomorphism.

1.2 One-sided reals

As is standard in point-free topology, we shall take the real numbers to be Dedekind
sections of the rationals. The two halves (L,U) of a section are taken to be disjoint
and located (= for any pair of rationals q < r , either q ∈ L or r ∈ U ). They must also
be rounded, ie if q ∈ L then there is some q′ > q with q′ ∈ L, and likewise for U .
This has the effect that the definition of real numbers as Dedekind sections also defines
the Euclidean topology: each rational q defines the opens (q,∞) as those sections for
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8 Ming Ng and Steven Vickers

which q ∈ L, and (−∞, q) for which q ∈ U . Of course, this is typical of point-free
spaces: the points are the models of some geometric theory, and then the geometric
formulae are the opens.

Having two halves L and U corresponds to approximating reals from below and
above, and classically, each can be derived from the other. Geometrically, however,
we also have “one-sided” approximations, lower (L) or upper (U ), and they are not
(constructively) equivalent to Dedekind sections. Qualitatively they correspond to the
topologies of lower or upper semicontinuity.

First, a series of remarks on order and topology in the upper reals.

Convention 1.7 In any space we have a specialisation order x ⊑ y if every open
containing x also contains y. For upper reals this comes down to

∀q ∈ Q (x < q→ y < q).

This says that, numerically, x ≥ y. For lower reals it is the other way round:
specialisation order is x ≤ y. In recognition of this, we use notation with arrows to
show the upward direction of the specialisation order, for example,

←−−−−−−
[−∞,∞] for the

upper reals from −∞ to ∞ (inclusive). Thus the pairs (x, y) such that x ≤ y form a
subspace of

←−−−−−−
[−∞,∞]×←−−−−−−[−∞,∞].

Remark 1.8 (The Existence of Infima/Suprema)

(i) An important fact about point-free spaces is that they have all sups of families of
points directed with respect to the specialisation order.4 For upper reals, these
are directed infima. In fact, since the rationals are totally ordered, this implies
the existence of arbitrary infima – at least if ∞ is included, as the nullary inf .

(ii) Classically, it is taken as characteristic of reals that they have all bounded infima
and suprema. Constructively this is not the case. By item (i) we have inf s of
upper reals and sups of lower reals. For Dedekind reals, we have binary min
and max, but for an infinitary inf or sup of Dedekinds we get, in general, only
an upper or lower real respectively.

Remark 1.9 It is clear from Remark 1.8 that we cannot capture strict inequality x < y
for upper reals. Fixing x , there cannot be a space

←−−−
(x,∞] because it would have to contain

all the rationals bigger than x , and hence also their infimum, which is x itself. However,
we do have a special case for when y is rational, as, for each q, x < q defines an open←−−−−−
[−∞, q) of

←−−−−−−
[−∞,∞]: it corresponds to the geometric sequent ⊤ → x < q. Its closed

4In point-set topology this is an aspect of what is known as sobriety.
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 9

complement, which we shall write
←−−−
[q,∞), corresponds to the sequent x < q→ ⊥. It

is easy to show that it is equivalent to q ≤ x , ie ∀r ∈ Q(x < r → q < r).

The one-sided reals have rich arithmetic structure, developed in Ng–Vickers [12] as far
as exponentiation and logarithms. However, there is one big proviso. All our maps are
continuous, and continuous maps preserve specialisation order. Hence all the arithmetic
operations, to be definable on one-sided reals, have to be monotone (or antitone if they
map from upper to lower or vice versa). For example, upper reals can be added, but
not subtracted (which would be antitone in the second argument). Non-negative upper
reals can be multiplied, but this cannot be extended to negatives; and even non-negative
upper reals cannot be divided.

For exponentiation and logarithms these conditions can get quite intricate. The main
result we shall take from [12] is the following. Note the hypothesis 1 ≤ x. For
0 < x < 1, the exponential xλ would be antitone in λ.

Theorem 1.10 (Upper Real Exponents) Fix a Dedekind x ∈ [1,∞). There exists the
following exponentiation map on the upper reals

x(—) :
←−−−−−−
[−∞,∞) −→←−−−[0,∞)

satisfying the Basic Equations:

xλ+λ′
= xλxλ

′
, x0 = 1

xλ·λ
′
= (xλ)λ

′
, x1 = x

(xy)λ = xλyλ, 1λ = 1

Further, the map x(—) is (weakly) monotonic, ie λ ≤ λ′ implies xλ ≤ xλ
′
.

Proof The fact that x(—) is well-defined and satisfies the listed basic equations is
Ng–Vickers [12, Proposition 3.4]. The fact that x(—) is monotonic come for free since
x(—) , being a continuous map, must respect the specialisation order of

←−−−−−−
[−∞,∞).

The exponential map on upper reals also has an inverse logx .

Finally, exponentiation and logarithms on the usual Dedekind reals behave as expected
in the geometric setting. This was worked out explicitly in Sections 3 and 4 in the same
paper [12], and will become relevant in Section 5.
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1.3 Spectra

Classically, Ostrowski’s Theorem holds that all non-Archimedean absolute values are
equivalent to the p–adic absolute values | · |p , for some prime p. As such, we need
a way of talking about the primes in our setting. Classically, one considers the set
of prime ideals, perhaps equipped with an additional topology (eg Zariski, coZariski,
constructible). In the point-free setting, however, the topology and points must be
defined simultaneously and cannot be thus separated. The following three examples
develop this remark, following the notation and topos-theoretic methods of Cole [2]
and Johnstone [4, §6.5]. In all three examples, R denotes a commutative ring with 1,
and spec(R) denotes the classical set of prime ideals of R.

Example 1.11 (The Zariski Spectrum) The Zariski Spectrum LSpec(R) for R is the
space whose points are the prime filters of R. More explicitly, they are the subobjects S
of R satisfying the axioms:

• 1 ∈ S , and 0 /∈ S;
• (∀a, a′ ∈ R). aa′ ∈ S↔ a ∈ S ∧ a′ ∈ S; and
• (∀a, a′ ∈ R). a + a′ ∈ S→ a ∈ S ∨ a′ ∈ S .

Notice: in Set, these axioms say that S is the complement of a prime ideal of
R.5 Hence, working classically, we get a point-set topological space equivalent to
spec(R) equipped with the Zariski topology, generated by the basic Zariski open sets
D(a) = {p ∈ spec(R) | a /∈ p}.

Example 1.12 (The coZariski Spectrum) The coZariski Spectrum ISpec(R) for R is
the space whose points are the prime ideals of R. Explicitly, they are the subobjects P
of R satisfying

• 1 /∈ P, and 0 ∈ P;
• (∀a, a′ ∈ R). aa′ ∈ P↔ a ∈ P ∨ a′ ∈ P; and
• (∀a, a′ ∈ R). a ∈ P ∧ a′ ∈ P→ a + a′ ∈ P.

Notice these are the contrapositive of the axioms for LSpec(R). Regarded as a point-set
space, ISpec(R) is spec(R) equipped with the coZariski topology, which is generated
by the sub-basic sets V(a) = {p ∈ spec(R) | a ∈ p}.

Example 1.13 (The Constructible Spectrum) The Constructible Spectrum FSpec(R)
for R is the space whose points are the complemented prime ideals of R. More explicitly,
the points of FSpec(R) are pairs (P, S) where P is a prime ideal, S is a prime filter, and

5For the avoidance of doubt, we do not accept R as a prime ideal of itself.
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P and S are complements of each other (as subobjects of R). Regarded as a point-set
space, FSpec(R) is spec(R) equipped with the constructible topology, which is the join
of the Zariski and coZariski topologies.

Discussion 1.14 Examples 1.11 - 1.13 combine to give the following picture. Viewed
as point-free spaces, the points of the three spectral spaces are (constructively) different.
However, when viewed classically as point-set spaces, then the topology and points
begin to separate. On the one hand, their underlying set of points become classically
equivalent: since every subset in Set is complementable, there is no longer a meaningful
difference between, eg a complementable prime ideal versus a prime ideal in Set. On
the other hand, their respective topologies (Zariski, coZariski, constructible) are still
different, although the algebraic reasons for this difference are now obscured.

When proving Ostrowski’s Theorem, it is most natural to regard the p–adic absolute
values | · |p as corresponding to the prime ideals of Z. In light of our above discussion,
this indicates that the correct space for us to use is the coZariski spectrum ISpec(Z).
Note that this is different from the standard choice of the Zariski spectrum in classical
algebraic geometry, where we are interested in localising by inverting all the elements
of a prime filter.

Definition 1.15 Write spec+(Z) for the set of non-zero prime elements of Z (which
can be identified with its non-zero prime ideals). It is geometrically isomorphic to N,
and we have an obvious map from spec+(Z) to FSpec(Z) and hence also to ISpec(Z)
and to LSpec(Z).

Classically, the three spectra for Z can be understood as three topologies on

spec+(Z) ∪ {0}.

• For ISpec(Z), the opens are arbitrary subsets of spec+(Z), together with the
whole space. 0 is bottom in the specialisation order.

• For LSpec(Z), the opens are the empty set, and the sets containing 0 and all but
finitely many of the non-zero primes. 0 is top in the specialisation order.

• FSpec(Z) is the one-point compactification of spec+(Z), with topology generated
by the other two. It is T1 (specialisation order is discrete).

For ISpec, we can extract part of that picture geometrically.

Lemma 1.16 Let ISpec+(Z) be the (open) subspace of ISpec(Z) comprising those
prime ideals that contain a non-zero element. Then ISpec+(Z) ∼= spec+(Z).

Journal of Logic & Analysis 17:FDS6 (2025)



12 Ming Ng and Steven Vickers

Proof Let p ∈ ISpec(Z) be a prime ideal containing a non-zero element a. We show
that p = (p) for some unique prime number p ∈ Z. Since also −a ∈ p, we can assume
without loss of generality that a is positive. By unique prime factorisation, we can
represent a as

a = pα1
1 pα2

2 . . . pαn
n .

Now by primeness of p, we know there is some p ∈ Z dividing a, with (p) ⊆ p.

To show that p ⊆ (p), suppose b ∈ p. Recall that Bézout’s Identity can be (construc-
tively) obtained from inverting the Euclidean Algorithm and performing the relevant
substitutions. One can thus verify that there exist m, n ∈ Z such that

(4) gcd(b, p) = mb + np ∈ p.

Because p is prime, that gcd must be either 1 or p, but 1 is not in p. Hence gcd(b, p) = p
and b ∈ (p).

Remark 1.17 Classically, one typically proves that p = (p) for some prime p ∈ Z
by obtaining it as an easy corollary of the more general result that all ideals of Z are
principal. However, proving the latter typically invokes the assumption that we can pick
the least element of any non-trivial ideal I ⊂ Z (see, eg van der Waerden [17, §3.7]),
which is a non-geometric assumption since membership of I is not decidable.

Remark 1.18 Since a prime ideal of Z is determined by its positive elements, we
might also consider restricting to just the positive integers N+ . In fact, an analogue of
Lemma 1.16 also exists for some notion of prime ideals for N+ , where now:

• Instead of non-trivial prime ideals of Z we consider inhabited prime ideals of
N+ .

• We shall need to explicitly require that these prime ideals p ∈ ISpec(N+) are
also closed under formal subtraction; that is,

∀m, n ∈ N+m ∈ p ∧ m + n ∈ p→ n ∈ p.

Then, the same argument works, so long as we avoid using the negative coefficients.
The Euclidean algorithm, for finding the gcd of two natural numbers a0 and a1 ,
relies on repeated integer division to produce a sequence of natural numbers with
ai−1 = mai + ai+1 and 0 ≤ ai+1 < ai . This eventually hits 0 at some an+1 , with an

dividing an−1 , and then an = gcd(a0, a1). The formal subtraction rule ensures that if
p contains a0 and a1 then it contains all the ai s up to an . If a1 is the prime p, then
an ∈ p must be either 1 – which is impossible – or p, so p divides a0 .
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2 Geometric Theories of Absolute Values

Our aim is to examine the notion of absolute value when using upper reals instead of
Dedekinds, and our basic general notion will be as follows.

Definition 2.1 (Absolute Values, valued in upper reals) Let R be a commutative ring
(discrete, not topological). An absolute value on R is a map | · | : R→←−−−[0,∞) satisfying
the following conditions:

|0| = 0
|1| = 1
|xy| = |x||y| (Multiplicativity)
|x + y| ≤ |x|+ |y| (Triangle Inequality)

We write R-←−av for the geometric theory of absolute values on R, [R-←−av] for the
corresponding point-free space. We also write ←−av for Z-←−av .

We have expressed R-←−av in a form that brings out the mathematics of absolute values
rather than the geometric logic. Nonetheless, there is a geometric theory implicit in
the definition. The signature has two sorts, for R and for the positive rationals Q+ ,
and a predicate ϕ on R × Q+ with ϕ(x, q) expressing |x| < q. Then the conditions
listed, together with the requirement for |x| to be an upper real, can all be expressed
geometrically. From the stated conditions, we can also derive the familiar properties:

• | − 1| = 1
(Why? | − 1|2 = |(−1)2| = 1, and the only solution in the non-negative upper
reals is 1.)

• | − x| = | − 1||x| = |x|

Definition 2.2 A Dedekind absolute value | · | on R is one that factors via [0,∞). We
write R-av for the theory of Dedekind absolute values on R.

A Dedekind absolute value is positive definite if it satisfies the axiom

∀x ∈ R (⊤ → x = 0 ∨ |x| > 0).

We write R-av+ for the theory of positive definite Dedekind absolute values on R.

Discussion 2.3 (Embeddings versus Monics) Geometrically, we need to distinguish
between properties defined by geometric sequents and those that also rely on uniquely
defined structure. The former define embeddings (of subspaces), while the latter define
maps of a more general kind: these are monic, because of uniqueness of the extra
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14 Ming Ng and Steven Vickers

structure, but not embeddings, because the extra structure changes the topology by
introducing more opens.

To illustrate: [R-av+] is a subspace of [R-av]. By contrast, to say an upper real is
Dedekind relies on structure, the lower part. The map [R-av]→ [R-←−av] that forgets the
lower parts is monic, because two Dedekind reals are equal if and only if their right
sections are equal, but not an embedding, because [R-av] has a stronger topology, with
extra opens provided by those lower parts.

Observation 2.4 The choice of axioms in R-←−av reflects the topological constraints the
upper reals puts on the algebra. In particular, notice:

(i) Without the Dedekind property, |x| > 0 is not available as a geometric formula,
and our description of positive definiteness is not geometric. We might try instead
to formulate it as

∀x ∈ R((∀q ∈ Q+. |x| < q)→ x = 0)

but the ∀q there, nested inside a sequent, is not a geometric formula. Hence our
Definition 2.1 does not embody positive definiteness.
Put otherwise, the topology of the upper reals forces us to work with the
multiplicative seminorms for R, as opposed to the usual norms.

(ii) In the classical setting, the property |1| = 1 can be derived from the others using
positive definiteness. For multiplicativity gives us |1| · |1| = |1|, which implies
|1| · (|1| − 1) = 0. Positive definiteness tells us that |1| ≠ 0, and thus |1| = 1.

The standard examples of absolute values can all be reworked to obey Definition 2.1,
which we sketch below. The syntactic details have been suppressed for readability, but
one easily checks that the definitions only use arithmetic operations that are well-defined
on the upper reals and satisfy the required axioms.

Example 2.5 We give some standard examples on Z. Since equality there is decidable,
it suffices to define | · | for n ̸= 0 since we already require that |0| = 0 by definition.

(i) The trivial absolute value on Z, denoted | · |0 , is defined as

|n|0 = 1, for all n ̸= 0.

(ii) The Euclidean absolute value on Z, denoted | · |∞ , is defined as the usual norm

|n|∞ = n, for all n ∈ N+

which is extended to the negative integers by the fact |n| = | − n| for all n ∈ Z.
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 15

(iii) Fix some prime p ∈ N+ . By unique prime factorisation, any non-zero integer n
can be represented as n = prz, where r ∈ N, z ∈ Z and gcd(p, z) = 1. As such,
define the p–adic ordinal

ordp(n) := max{r ∈ N | pr divides n}.

The canonical p–adic absolute value on Z is then defined as

|n|p = p−ordp(n) for all n ̸= 0.

(iv) Our final example here is admitted by our use of seminorms. Let p ∈ N+ be
prime. The p–characteristic absolute value on Z is then defined as

|n|Fp =

{
0 if p divides n,

1 if p does not divide n.

Further examples can be obtained by exponentiating – in fact, the classical Ostrowski’s
Theorem says these are the only examples. For our setting the details are explained
more precisely in Theorem 4.1. For the moment, let us say roughly that | · |λ∞ is an
absolute value if 0 ≤ λ ≤ 1, with | · |0∞ = | · |0 . Also,

(
pordp(n)

)λ gives an absolute
value for −∞ ≤ λ ≤ 0, with | · |p for λ = −1 and | · |Fp for λ = −∞.

Remark 2.6 Why not go one step further and work with the upper-valued absolute
values on N? After all, as Proposition 2.7 will show, upper-valued absolute values
on Z themselves are determined by their values on the positive integers N+ . A fuller
answer will be presented in Discussion 4.4. For now, let us say that proving Ostrowski’s
Theorem without additive inverses results in certain technical difficulties which incline
us to stick with Z.

Proposition 2.7 Absolute values over Z can equivalently be defined as maps | · | : N→←−−−
[0,∞) satisfying |1| = 1, multiplicativity, and the Triangle Inequality (quantified over
N, of course), together with the Subtractive Triangle Inequality

|m| ≤ |m + n|+ |n| for all n ∈ N.

Proof If an absolute value on Z is given, then it must satisfy the subtractive inequality
when restricted to N. (In fact, the usual and subtractive inequalities are equivalent when
applied to the whole of Z.)

Now suppose we are given | · | on N satisfying the subtractive law. Clearly | · | must
be extended to Z by |0| = 0 and, for n > 0, | − n| = |n|. The notation will be
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16 Ming Ng and Steven Vickers

less confusing if we temporarily write mag n for the magnitude of n, ie |n|∞ from
Examples 2.5. Then |n| = |mag n|.

The only non-obvious question is whether it satisfies the Triangle Inequality on the
whole of Z. Suppose, then, we are given m, n ∈ Z.

We claim that, of the three magnitudes of m, n,m + n, one is the sum of the other two.
Note that if it is true for m and n, then it is also true for −m and −n: because the three
magnitudes are unchanged.

Let us consider how many of m, n,m + n are negative.

If none, then the magnitudes also are m, n,m + n, so the claim holds. Hence it also
holds if all three are negative.

Now suppose just one is negative. It cannot be m + n, so, without loss of generality, we
can take it to be m. Then the three magnitudes are −m, n,m + n and the claim holds.
Hence it also holds if two are negative.

Now let us return to the Triangle Inequality for Z, which reduces to

|mag (m + n)| ≤ |mag m|+ |mag n|.

If mag (m + n) is the sum of the other two, then this is an instance of the Triangle
Inequality for N, while if mag m or mag n is the sum of the other two then it is the
Subtractive Inequality.

Next, let us recall the definition of a geometric field:

Definition 2.8 A discrete ring R is called a geometric field if it satisfies the following:

(i) 0 ̸= 1
(ii) For any x ∈ R, either x = 0 or ∃x−1 ∈ R such that x · x−1 = 1.

Remark 2.9 Classically, Definition 2.8 is a plain statement of what it means to be a
field. Geometrically, the requirement for R to be discrete is important, as the definition
does not work for a topological field such as R. In fact, it is easy to show that a
geometric field must have decidable equality – see Johnstone [3, Lemma 2.1].

Proposition 2.10 Let R be a geometric field. Any absolute value | · | on R is Dedekind
and positive definite.

In fact, [R-←−av] ∼= [R-av+].
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 17

Proof Suppose x ∈ R. If q is rational, then we can define q < |x| when q < 0, or
there are y ∈ R with xy = 1, and r′ ∈ Q with |y| < r′ (so 0 < r′ ) and q < r′−1 .
Clearly this defines a lower real; we must show that, together with the given relation
|x| < r , it defines a Dedekind. (For the full list of required properties, see [12, Definition
1.14]).

For disjointness, suppose q < |x| (with y and r as above), and |x| < q. Then
1 = |x||y| < qr′ < 1, a contradiction.

For locatedness, suppose a < b are rationals. If a < 0 then a < |x| by definition.
If a = 0, then replace a by b/2. Hence we can assume 0 < a. Now if x = 0 then
|x| = 0 < a < b, while if x has an inverse y, then |x||y| = 1 < b/a, so we can find
r, r′ with |x| < r , |y| < r′ , and rr′ = b/a. If r ≤ b then |x| < b and we are done. If
b < r then rr′ < r/a, so a < 1/r′ and a < |x|.

Positive definiteness follows from the fact that if xy = 1 then |x| = |y|−1 > 0.

We have now shown that, from an absolute value, we can define the unique structure
needed to make it Dedekind and positive definite. Roughly speaking the extra opens
q < |x| are provided using |x−1| < q−1 . This gives the map [R-←−av]→ [R-av+], and it
is clearly inverse to the forgetful map in the opposite direction.

2.1 Archimedean versus Non-Archimedean Absolute Values on Z

Definition 2.11 Let | · | be an absolute value on Z. We shall write Z̸=0 for the set of
non-zero integers.

(i) | · | is non-Archimedean (NA) if |n| < 1 for some n ∈ Z̸=0 .
Immediately we see that the non-Archimedeans form an open subspace of [←−av] –
it’s the join of the open subspaces |n| < 1. We write [←−avNA] for it.

(ii) | · | is Archimedean (A) if 1 ≤ |n| for every n ∈ Z̸=0 .
This is a meet of closed subspaces for 1 ≤ |n|, and in fact is the closed complement
of [←−avNA]. We write [←−avA] for it.

(iii) | · | is ultrametric if |m + n| ≤ max{|m|, |n|} for every m, n ∈ Z̸=0 .
The ultrametrics do form a subspace of [←−av], which we shall write [←−avU], but
it is neither open nor closed. It is the meet of an infinite family of subspaces
described by the sequent

∀m, n ∈ Z, q ∈ Q(|m| < q ∧ |n| < q→ |m + n| < q).

We have departed from the usual convention here. Some guiding observations:
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• Normally | · | would be considered Archimedean only if it has some |n| > 1, but
we cannot express that for |n| as upper real. For us, the trivial absolute value has
been reassigned as Archimedean, though this does not make a huge difference to
the classical account, insofar as that frequently excludes the trivial absolute value
as a special case.

• Notice: the trivial absolute value is still ultrametric, so ultrametric and non-
Archimedean are no longer synonymous. (In Lemma 3.3, however, we shall
prove that every non-Archimedean is ultrametric, as expected.)

• The fact that [←−avNA] and [←−avA] are now open and closed complements makes
the mathematics significantly smoother for us. In particular, it enables us to
use (via Lemma 1.6) case-splitting techniques that, more generally, are invalid
geometrically.

3 Preliminary lemmas for absolute values on Z

In this Section we gather together some preliminary lemmas that are explicit or implicit
in van der Waerden’s treatment of Ostrowski’s Theorem [18].

The first is adjusted for upper reals, lacking the ability to divide.

Lemma 3.1 Let α, β be positive Dedekinds, and γ, γ′ be non-negative upper reals
such that

γv ≤ (αv + β) · (γ′)v

for all v ∈ N+ . Then γ ≤ γ′ .

Proof First, a basic but key observation: if γ, γ′ ∈ ←−−−[0,∞] such that γ ≤ (1 + δ)γ′

for all positive rationals δ , then this implies γ ≤ γ′ . It thus suffices to prove that the
lemma’s hypothesis implies γ ≤ (1 + δ)γ′ , for all positive rationals δ .

Fix such a rational δ > 0. Binomial expansion yields the inequality (1 + δ)v ≥
1 + vδ + v(v−1)

2 δ2 for any integer v ≥ 2. It is clear that for sufficiently large v, we get

vδ > β and
1
2

(v− 1)δ2 > α

and so:

(5) γv ≤ (αv + β) · (γ′)v < (1 + δ)v · (γ′)v =
(
(1 + δ)γ′

)v

By [12, Lemma 2.12], (—)v reflects non-strict order on non-negative upper reals: in
other words, from Equation (5) we can deduce γ ≤ (1 + δ)γ′ as required.
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A Point-Free Look at Ostrowski’s Theorem and Absolute Values 19

The second lemma encapsulates a formula in the main proof in [18]. We have clarified
its role by varying the base of the logarithms.

Lemma 3.2 (Fundamental Lemma for Ostrowski) Let a, b > 1 be any pair of integers
greater than 1, and let | · | be any absolute value on Z. Then:

(i) loga |a| ≤ max{0, logb |b|} ≤ 1
(ii) max{0, logb |b|} = max{0, loga |a|}

In particular, we can associate a constant upper real M|·| := max{0, logb |b|} ≤ 1 to
any absolute value | · | since by (ii) we know M|·| is independent of our choice of b > 1.

Proof (i): First, note that for any n ∈ N+ , the triangle inequality yields:

(6) |n| = | 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

| ≤ |1|+ |1|+ · · ·+ |1|︸ ︷︷ ︸
n

= n

Hence, if b > 1, we have logb |b| ≤ 1.

Now, given any pair of integers a, b such that a, b > 1, and given any v ∈ N+ , we may
expand av in powers of b as follows:

(7) av = c0 + c1b + ...+ crbr

where 0 ≤ ci < b for 0 ≤ i ≤ r , and cr ̸= 0. It is obvious that

br ≤ av

which (taking logb (—) on both sides) yields:

(8) r ≤ logb av = v logb a

Hence, Equation (7) and the triangle inequality give

|av| ≤ |c0|+ |c1||b|+ ...+ |cn||b|r

≤ b(1 + |b|+ · · ·+ |b|r) ≤ b(r + 1)Br

where B = max{1, |b|}. By Equation (8), we get

|a|v = |av| ≤ b(v logb a + 1) · (Blogb a)v.

Applying Lemma 3.1, this yields

|a| ≤ Blogb a

which in turn yields:

loga |a| ≤ max{0, loga |b|logb a}

= max{0, logb aloga |b|} = max{0, logb |b|}
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To prove (ii), note that (i) yields for any pair of integers a, b > 1

max{0, loga |a|} ≤ max{0,max{0, logb |b|}} = max{0, logb |b|}

and so by symmetry

max{0, loga |a|} = max{0, logb |b|}.

Our third lemma is that non-Archimedean absolute values have the ultrametric property.
It is important to keep in mind our Definition 2.11. The two terms are no longer
synonymous, because the trivial valuation is ultrametric without being non-Archimedean.

Lemma 3.3 If an absolute value | · | on Z is non-Archimedean then it is ultrametric.

Proof For some n we have |n| < 1, so max{0, logn |n|} = 0. Then by Lemma 3.2,
|m| ≤ 1 for all m. We can now apply Lemma 3.1 to show |a + b| ≤ max{|a|, |b|}. For
any v ∈ N+ , we have |

(v
i

)
| ≤ 1 and so binomial expansion yields:

|a + b|v ≤ |a|v + |a|v−1|b|+ · · ·+ |b|v ≤ (v + 1) ·
(
max{|a|, |b|}

)v

4 Ostrowski’s Theorem for Z

Ostrowski’s Theorem is typically phrased as a classification result — it answers the
question: ‘What are all the non-trivial places of Q?’. Here, we sharpen this to a
representation result for absolute values on Z:

Theorem 4.1 (Ostrowski’s Theorem for Z) As our setup, denote:

• [←−av] := The space of absolute values on Z, valued in upper reals.
• ISpec(Z) := The space of prime ideals of Z.
• Z̸=0 := The set of non-zero integers.
•
←−−−−−
[−∞, 1] := The space of upper reals bounded above by 1.

Define:

P←−
Λ

:= {(p, λ) ∈ ISpec(Z)×←−−−−−[−∞, 1] | λ < 0↔ ∃a ∈ Z̸=0.(a ∈ p)}

Then the following spaces are equivalent:

[←−av] ∼= P←−
Λ
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Informally, Theorem 4.1 says: any absolute value | · | of Z can be canonically associated
to a pair

(p, λ) ∈ ISpec(Z)×←−−−−−[−∞, 1]

satisfying certain compatibility conditions.

Before we begin the proof, some preparatory remarks. One, the standard proofs of
Ostrowski’s Theorem (spelled out in, eg [18]) can be adapted to our setting, but they
still only give us one direction of the isomorphism. Additional work is therefore needed
to construct the second direction, and to show that the two directions are inverse to each
other. Two, the decision to work with upper reals (as opposed to Dedekinds) makes the
algebra rather delicate, for reasons already alluded to in Observation 0.1. Some care is
needed in order to maintain geometricity throughout the proof. For the expert reader, let
us remark that this (interestingly) results in a picture of [←−av] that is similar but slightly
different from the classical picture of the Berkovich spectrum M(Z).6

4.1 First Direction: Classification of Absolute Values

First we define a map

f̂ : [←−av] −→ P←−
Λ

| · | 7−→ (p|·|, λ|·|)

by:

• p|·| := {n ∈ Z||n| < 1}
• λ|·| := inf{logm |m|| m ∈ spec+(Z)}

Why is λ|·| a geometric construction? Note that each m is a Dedekind real, so by

Ng–Vickers [12] we have a map logm :
←−−−
[0,∞)→←−−−−−−[−∞,∞). Then λ|·| is defined as an

infimum of upper reals, and so (see Remark 1.8) itself is also an upper real.

To show p|·| is a prime ideal, the only point of difficulty is to show closure under
addition and multiplication.

• Closure under Addition. Suppose m, n ∈ p|·| . If either is zero, then immediately
m + n ∈ p|·| . If both are non-zero, then by definition | · | is non-Archimedean
and hence (Lemma 3.3) ultrametric, so |m + n| ≤ max{|m|, |n|} < 1.

6Recall: the Berkovich Spectrum on Z is defined as the space of multiplicative seminorms on
Z , but is equipped with the Gel’fand topology, unlike the non-Hausdorff topology that emerges
here due to our use of upper reals.
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• Closure under Multiplication. Suppose m ∈ p|·| , and n ∈ Z. If either is zero,
then m · n ∈ p|·| . If m ̸= 0, then | · | is non-Archimedean. Assume that m > 1.
If n = 1, it is obvious m · n ∈ p|·| . If n > 1, the Fundamental Lemma 3.2 yields

logn |n| ≤ max{0, logm |m|} = 0

and so |n| ≤ 1. As such, |m · n| = |m||n| < 1 and so m · n ∈ p|·| . Finally, if
instead m < −1 and/or n ≤ −1, the same argument still holds since |m| = |−m|
and |n| = | − n|.

Now we know that p|·| is prime, by Lemma 1.16 it has a non-zero element if and only
if there is a (unique) non-zero prime p for which |p| < 1, ie logp |p| < 0, and this
holds if and only if λ|·| < 0. Hence (p|·|, λ|·|) is in P←−

Λ
and we have completed the

construction of f̂ .

In the Archimedean and non-Archimedean cases, we can recover | · | from f̂ (| · |).

Proposition 4.2 Let | · | be an absolute value on Z.

(i) | · | is non-Archimedean if and only if λ|·| < 0. In that case, p|·| = (p) for some
unique prime p, λ|·| = logp |p|, and for all n ∈ N+ we have

|n| =
(
pordp(n))λ|·| .

(ii) | · | is Archimedean if and only if 0 ≤ λ|·| . In that case, p|·| = (0), and for all
n ∈ N+ we have

|n| = nλ|·| .

Proof In each case, the facts about p|·| and the sign of λ|·| have already been noted.

(i): Suppose | · | is non-Archimedean. By multiplicativity,

|n| =
∏

q prime

|q|ordq(n).

If q is a prime not equal to p, then q /∈ p|·| and so 1 ≤ |q|. On the other hand,
logq |q| ≤ max{0, logp |p|} = 0 by Lemma 3.2, so |q| ≤ 1. We deduce that |q| = 1,
and it follows that λ|·| = logp |p|, and:

|n| = |p|ordp(n) =
(

plogp |p|
)ordp(n)

= pλ|·|·ordp(n)

(ii): Suppose | · | is Archimedean. Then for all n ≥ 2 in Z+ (the case n = 1 is trivial)
we have logn |n| = max{0, logn |n|}, which is the constant M|·| of Lemma 3.2. It
follows that λ|·| is this constant, so |n| = nlogn |n| = nλ|·| .
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Discussion 4.3 (Topological Constraints by Upper Reals) Unlike the classical Os-
trowski’s Theorem, Proposition 4.2 does not directly prove that any non-Archimedean
absolute value is equivalent to | · |p for some prime p ∈ N+ . How come? Suppose,

given some non-Archimedean | · |, we want a real λ|·| such that | · | = | · |λ|·|
p . Since

|p|p = p−1 = 1
p , the relevant exponent would be λ|·| = log 1

p
|p|, which we know to be

a positive lower real by Ng–Vickers [12, Remark 4.4]. Geometrically, it is more natural
to use the signed upper real λ to give a uniform treatment.

Discussion 4.4 (Restricting to N) Let us return to Remark 2.6. The suggestion there
is that we might be able to deal with absolute values entirely through their restriction
to positive integers, so long as we use subtractive versions of the definition of ideals
(Remark 1.18) and the triangle inequality (Proposition 2.7).

By Proposition 2.7 it is indeed enough to define an absolute value by its restriction to
N. It can immediately be extended to Z, after which we have our proof of Ostrowski.
However, there still remains the question whether that proof itself can be framed in
terms of the absolute values on N.

There is a definite obstruction to making this work, and we do not know whether it
can be circumvented. In defining f̂ , we need to show that p|·| is a prime ideal (in the
sense of N), and for that we use Lemma 3.3 to show that if p|·| is non-trivial then | · | is
ultrametric. But to work with N, the ultrametric property needs to have a subtractive
version,

|m| ≤ max{|m + n|, |n|}.

Together with the usual version, they say that the two largest of |m|, |n| and |m + n| are
equal, which is clear once Theorem 4.1 has been proved. (Consider the two smallest of
ordp(m), ordp(n), and ordp(m + n).) Before then, however, the proof of Lemma 3.3
does not readily adapt to the subtractive version.

4.2 Second Direction: (p, λ) determines an Absolute Value

We now work to define a map

ĝ : P←−
Λ
−→ [←−av]

(p, λ) 7−→ | · |p,λ

inverse to f̂ .

In fact, Proposition 4.2 already tells us how to do this in the complementary Archimedean
and non-Archimedean cases. However, the fact that we require this construction to be
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geometric creates subtleties. In particular, it is not decidable if p is non-trivial or (0),
nor is it decidable if λ ≤ λ′ for any λ, λ′ ∈ ←−−−−−[−∞, 1]. Hence, given (p, λ) ∈ (P,Λ),
our desired map ĝ cannot be directly defined using the following case-splittings:

• Case 1: λ < 0, Case 2: 0 ≤ λ; or
• Case 1: ∃a ∈ Z̸=0 such that a ∈ p, Case 2: p = (0).

In other words, the natural fault lines along which one might split (p, λ) ∈ P←−
Λ

into the
Archimedean versus non-Archimedean case do not work in a naive way (ie by using
decidability to make the split as a coproduct before defining the map separately on the
two components).

We must therefore find a geometric construction that covers both cases in a uniform
way.

Construction 4.5 Suppose (p, λ) ∈ P←−
Λ

. We define | · |p,λ : Z→←−−−[0,∞) as:

(9) |n|p,λ =


0 if n = 0

min
{

1, inf{
(
pordp(n)

)λ | p prime in p}
}
· max

{
1, nλ

}
if n > 0

| − n|p,λ if n < 0

Discussion 4.6 Although Construction 4.5 consists of many different components,
each component is geometric, and so the final construction is also geometric. To see
this, note:

• The initial case split into n = 0 versus n > 0 versus n < 0 is permitted since <
is decidable on Z.

• The p–adic ordinal ordp(n) is also geometric. This essentially follows from
the Euclidean Algorithm, which gives a constructive account of unique prime
factorisation for any n ∈ Z̸=0 .

• The construction
inf{(pordp(n))λ | p prime in p}

is a geometric workaround to p = (0) being undecidable. Its geometricity comes
from the fact that upper reals possess arbitrary inf s (Remark 1.8). We shall see
how this works in Proposition 4.7.

• Finally, recall from Section 1.2 that min, max and multiplication are all well-
defined operations on the non-negative upper reals.

We can now see how, in the two particular cases corresponding to the non-Archimedean
and Archimedean cases in Proposition 4.2, the definition splits in the expected way.
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Proposition 4.7 Let (p, λ) be in P←−
Λ

.

(i) If λ < 0 then there is a unique prime p in p and, for n ̸= 0,

|n|p,λ =
(
pordp(n))λ .

(ii) If 0 ≤ λ then, for n > 0,
|n|p,λ = nλ.

Proof (i): By the P←−
Λ

condition and Lemma 1.16, there is a unique prime p in p and,

for n > 0, we have both
(
pordp(n)

)λ ≤ 1 and nλ ≤ 1. It follows that |n|p,λ evaluates as
stated. For n < 0 the same formula works.

(ii): If 0 ≤ λ, then p must be (0). Then the inf in Equation (9) is empty, which
evaluates as ∞. We have 1 ≤ nλ , so the entire expression evaluates as stated.

With this observation we can use the Case-Splitting Lemma 1.6 to show that ĝ maps to
[←−av].

Proposition 4.8 If (p, λ) is in P←−
Λ

, then | · |p,λ is an absolute value, and moreover
f̂ (| · |p,λ) = (p, λ).

Proof We know that | · |p,λ is a map from Z to
←−−−−−−
[−∞,∞), and [←−av] is a subspace of

the space of such maps. We are trying to show that the inverse image of that subspace is
the whole of P←−

Λ
, and for that it suffices to show that it contains both the open subspace

where λ < 0 and its closed complement, where 0 ≤ λ. This is what Lemma 1.6 tells
us.

In the light of Proposition 4.7, the multiplicative property is clear for both cases. It is
the triangle inequality that we need to address.

Case 1, λ < 0: In fact we expect, and shall prove, the ultrametric inequality. Suppose
m, n ̸= 0 (it is trivial if either is zero), with m = z1pr1 and n = z2pr2 , where z1, z2 ∈ Z̸=0 ,
r1, r2 ∈ N and gcd(z1, p) = 1 = gcd(z2, p). We might as well suppose r1 ≤ r2 , so

m + n = (pr1) · (z1 + z2pr2−r1)

and ordp(m + n) ≥ r1 . It follows (using λ < 0) that:

|m + n|p,λ ≤ pr1λ ≤ max(|m|p,λ, |n|p,λ)

Case 2, 0 ≤ λ: By Proposition 4.7, we need to show that

(10) (m + n)λ ≤ mλ + nλ.
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Suppose we have positive rationals 0 < q, t ≤ 1. Since t(—) is antitonic with respect to
rational exponents, this implies that t ≤ tq , and so

mqt ≤ mqtq, for any positive integer m > 0.

This in turn implies:

(m + n)q = (m + n)q
((

m
m + n

)
+

(
n

m + n

))
≤ (m + n)q

(
m

m + n

)q

+ (m + n)q
(

n
m + n

)q

= mq + nq
(11)

The calculation here is intrinsically two-sided, relying on the assumption that q is
rational: for an upper real λ instead of q, we should be trying to multiply, for example,

an upper real (m + n)λ by a lower real
(

m
m+n

)λ
, and that is not well-defined (cf the

remark on monotonicity in Section 1.2).

However, the conclusion (m + n)q ≤ mq + nq still makes sense for upper reals, with ≤
now the (opposite of the) specialisation order. Hence for an upper real λ we have:

(m + n)λ = inf
λ<q

(m + n)q ≤ inf
λ<q

(mq + nq) = inf
λ<q

mq + inf
λ<q

nq = mλ + nλ

To summarise: | · |p,λ is an absolute value in both Cases 1 and 2. By Lemma 1.6, this
defines a map ĝ : P←−

Λ
→ [←−av]. For the rest of the result we look at the equaliser of f̂ ◦ ĝ

and the identity, a subspace of P←−
Λ

. Again, to show it is the whole of P←−
Λ

it suffices to
show the equation is satisfied in both the two cases.

Case 1, λ < 0: For p, we have:(
pordp(n))λ < 1⇔ pordp(n) > 1⇔ ordp(n) > 0⇔ p divides n⇔ n ∈ p

For λ, consider that for a prime q we have

logq

((
pordp(q))λ) =

{
logp

(
pλ
)
= λ if q = p,

logq 1 = 0 if q ̸= p.

Hence the inf of these is λ.

Case 2, 0 ≤ λ: For p, we have nλ < 1 if and only if n = 0.

For λ,
logq

(
qλ
)
= λ

and the inf of these is λ.
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It remains to show that ĝ ◦ f̂ is the identity. Again it suffices to verify this on the
non-Archimedeans and the Archimedeans, and that was done in Propositions 4.2 and 4.7.

This concludes the proof of Theorem 4.1.

Notice: the open–closed gluing of [←−avNA] to [←−avA] in [←−av] transfers to P←−
Λ

.

Corollary 4.9 [←−avNA] ∼= spec+(Z)×←−−−−−[−∞, 0)

[←−avA] ∼=
←−−
[0, 1]

Proof The main theorem splits up using Propositions 4.2 and 4.7.

Discussion 4.10 (Undecidability and Geometricity) Given our previous remarks
about decidability issues, our proof of Theorem 4.1 highlights an interesting subtlety.
Namely, why is undecidability a barrier to geometricity when defining constructions,
but not when proving properties? Examining the hypotheses of the Case-Splitting
Lemma 1.6, a key tool in our proof, reveals an interesting fine print. The lemma only
justifies lifting a construction via case-splitting once the construction already exists (ie

the map X
f−→ Z ); it does not justify defining a new construction via case-splitting, as

one might have hoped.

5 Absolute Values on Q

We now turn to absolute values on Q, with a view to recovering Ostrowski’s theorem in
its usual form. Straight away, Proposition 2.10 tells us that [Q-←−av] ∼= [Q-av+], so, as
far as Q is concerned, no extra generality is obtained by using the upper reals.

However, we can still exploit Theorem 4.1 in a non-trivial way by observing that an
absolute value on Q can be derived from its restriction to Z – which, again, is Dedekind
and positive definite.

Proposition 5.1 The restriction map [Q-av+]→ [Z-av+] is an isomorphism.

Proof For the inverse, suppose | · | is a positive definite, Dedekind absolute value on
Z. If n ̸= 0 then |n| is positive, and hence invertible. Thus, to extend | · | to Q we
must define |m/n| = |m|/|n|. This is easily checked to be well defined and a positive
definite, Dedekind absolute value on Q, restricting to the original | · | on Z.
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We then have the forgetful map to [Z-←−av], and our aim is to exploit its isomorphism
with P←−

Λ
. Clearly, we shall be interested in allowing the λ components in P←−

Λ
to be

Dedekind.

Definition 5.2 (cf Theorem 4.1) Define:

PΛ := {(p, λ) ∈ ISpec(Z)× (−∞, 1] | λ < 0↔ ∃a ∈ Z̸=0.(a ∈ p)}

Notice we no longer have −∞ since we now work with Dedekinds as opposed to upper
reals. Assembling the pieces, we get:

(12)

[Q-←−av] [Q-av+] [Z-av+] [Z-←−av]

PΛ P←−
Λ

∼= ∼=

∼=

An obvious conjecture is that the isomorphism of Theorem 4.1 lifts to one between
[Z-av+] and PΛ . Encouragingly (Propositions 5.5 and 5.7), the isomorphisms of
Corollary 4.9 do lift, and in Theorem 5.8 we use this to obtain the standard Ostrowski
result for non-trivial Dedekind absolute values.

Unfortunately (Observation 5.10), the isomorphisms do not transfer across the boundary
at the trivial absolute value. The basic problem is that an infimum of Dedekind reals
has an upper part, but is not necessarily Dedekind. Unexpectedly, we find that [Z-av+]
and PΛ are two distinct, non-isomorphic open-closed gluings of spec+(Z)× (−∞, 0)
to [0, 1]. We do not fully understand what is going on here, nor what it has to say about
number theory.

We are already writing [←−av] for [Z-←−av]. Let us also write [av] for the isomorphic
spaces [Q-←−av], [Q-av+], and [Z-av+]. Recalling Definition 2.11, [av] inherits three
subspaces from [←−av]: the open subspace of non-Archimedeans, its closed complement
of Archimedeans, and the space of ultrametrics. We shall write them as [avNA], [avA],
and [avU]. Keep in mind that our definition of Archimedean is non-standard in that it
includes the trivial absolute value.

Definition 5.3 An absolute value | · | over Q is non-trivial Archimedean if there exists
some n ∈ Z̸=0 such that |n| > 1. They form an open subspace [avA+] of [av].

Proposition 5.4

(i) [avNA] and [avA+] are disjoint.
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(ii) The closed complement of [avNA] ∨ [avA+] is {| · |0}.
(In the light of this, we shall call | · | in [av] non-trivial if it is in [avNA]∨ [avA+].)

(iii) The closed complement of [avA+] is [avU].

Proof (i) follows from Lemma 3.2: if we have |m| < 1, with m ̸= 0, then we cannot
have any |n| > 1.

(ii) For n ̸= 0, if |n| < 1 and |n| > 1 are both impossible, then we must have |n| = 1.

(iii) By part (ii), the closed complement of [avA+] is the subspace join of [avNA] and
{| · |0}. Using Lemma 3.3, both these are contained in [avU].

Conversely, if | · | is ultrametric and non-trivial Archimedean, with |n| > 1, then from
|n| = |1 + · · · + 1| ≤ max(1, . . . , 1) = 1 we get a contradiction. Hence [avU] is
contained in the complement of [avA+].

The following two propositions extend our previous work in Section 4 to the present
setting. An important constructive issue is a consequence of Remark 1.8: even for a
Dedekind absolute value, the upper real λ|·| of Section 4.1, calculated as an inf , is not
necessarily Dedekind. To prove it is, we need to deal with the non-Archimedean and
Archimedean cases separately.

Proposition 5.5 We have an isomorphism

[avNA] ∼= spec+(Z)× (−∞, 0).

Proof If | · | ∈ [avNA], consider f̂ (| · |) = (p|·|, λ|·|). Because | · | is non-Archimedean,
there is a unique p ∈ spec+(Z) such that p|·| = (p), and this gives a map [avNA] →
spec+(Z). We then have λ|·| = infq∈spec+(Z) logq |q| = logp |p|, because p is the unique
prime for which |p| < 1, and this λ|·| is Dedekind in (−∞, 0). This gives a map

F : [avNA]→ spec+(Z)× (−∞, 0).

In the opposite direction, suppose (p, λ) ∈ spec+(Z)×(−∞, 0) with p = (p). The same
construction as in Proposition 4.7 maps it to the absolute value with |n|(p),λ =

(
pordp(n)

)λ ,
which is Dedekind and positive definite, as well as non-Archimedean. Call the associated
map of this construction G. Assembling the data, this gives commutative diagrams:

(13)

[avNA] [←−avNA] [←−av]

spec+(Z)× (−∞, 0) PΛ P←−
Λ

F f̂G ĝ

Both rows are monic (using Discussion 2.3), so F and G are inverse to each other
because f̂ and ĝ are.
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Corollary 5.6 For any | · | ∈ [avNA] with |p| < 1, p ∈ spec+(Z), there exists
α ∈ (0,∞) such that | · | = | · |αp .

Proof Take α = −λ|·| and use Proposition 4.7.

Proposition 5.7 We have isomorphisms:

[avA] ∼= [0, 1]

[avA+] ∼= (0, 1]

In particular, for any | · | ∈ [avA], there exists α ∈ [0, 1] such that | · | = | · |α∞ ; if | · |
is non-trivial then α > 0.

Proof The proof is similar to that of Proposition 5.5. Define the maps

F : [avA] −→ [0, 1]

| · | 7−→ log2 |2|
G : [0, 1] −→ [avA]and

λ 7−→ | · |λ∞ = ĝ ((0), λ) .

From the Fundamental Lemma 3.2, we see that logn |n| = F(| · |) for all integers n > 1,
and so f̂

(
| · |

)
=

(
(0),F(| · |)

)
. Also, G(λ) is clearly Dedekind and positive definite.

We now have a diagram like that of (13), but with [avA] and [0, 1] on the left. The
same argument shows that F and G are mutually inverse. A similar proof shows that
[avA+] ∼= (0, 1].

Theorem 5.8 (Ostrowski’s Theorem for Q) Let | · | be a non-trivial absolute value
on Q. Then, one of the following must hold:

(i) | · | = | · |α∞ for some α ∈ (0, 1]; or
(ii) | · | = | · |αp for some α ∈ (0,∞) and some prime p ∈ N+ .

Proof Working with non-trivial absolute values, we are in [avNA] ∨ [avA+]. As it is a
join of two disjoint opens, we can validly use case splitting in the geometric reasoning to
combine the F -maps of Propositions 5.5 and 5.7 to get a map from [avNA] ∨ [avA+] to
(0,∞) ∨ (0, 1]. Categorically, [avNA] ∨ [avA+] is the coproduct of [avNA] and [avA+].
Similarly, we can combine the G-maps to get an inverse.

For the second part, we then use Corollary 5.6.
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Discussion 5.9 While negation inverts orientation on one-sided reals (and so, a negated
upper real becomes a lower real), a negated Dedekind real is still a Dedekind, so
Corollary 5.6 avoids the same issues mentioned in Discussion 4.3. Further, unlike the
one-sided reals, −∞,∞ are not Dedekinds, which is why λ = log 1

p
|p| ∈ (0,∞), as

opposed to λ ∈ (0,∞]. In other words, if we wish to view λ as a Dedekind, then
we lose the ability to speak about the true seminorms, the p-characteristic absolute
values | · |Fp , which correspond to | · |∞p for prime p ∈ N+ . This, combined with
Observations 0.1 and 2.4, brings into focus the following connection between the algebra
(absolute values) and topology (the reals):

• Multiplicative Seminorms ↭ Upper reals
• (Positive Definite) Norms ↭ Dedekind reals

Perhaps surprisingly, the assumption of non-triviality is essential in Theorem 5.8. As
alluded to earlier, we cannot combine Propositions 5.5 and 5.7 to get an isomorphism
of [av] with PΛ . In fact, there is not even any map from [av] to PΛ that makes the
obvious diagram commute with f̂ : [←−av]→ P←−

Λ
. We prove this by restricting to [avU]

and considering the projection from PΛ to (−∞, 0].

Observation 5.10 There is no map F′ : [avU]→ (−∞, 0] compatible with f̂ restricted
to [←−avU]:

(14)

[avU] [←−avU]

(−∞, 0]
←−−−−−
[−∞, 0]

F′ f̂

Consequently, there is no map from [av] (ie [Z-←−av]) to PΛ that makes diagram (12)
commute.

Proof The conditions tell us that

F′(| · |) = inf
p prime

logp |p|

but also that this infimum is to be Dedekind (and not just upper). Let us examine the
inverse image F′−1(−1, 0].

Using multiplicativity and the theory of logarithms, we see that a subbase of opens for
[avU] is provided by conditions q < logp |p| < r , where q and r are rationals and p
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is prime. Since | · | is ultrametric, we can assume q < 0. Hence a base of opens is
provided by finite conjunctions:

(15)
n∧

i=0

qi < logpi
|pi| < ri

If F′ exists, then F′−1(−1, 0] is an open containing | · |0 (because F′(| · |0) = 0), and so
| · |0 is in such a basic. We must then have 0 < ri for every i. However, it is impossible
for such a basic to be contained in F′−1(−1, 0]. For we can define | · | so that |p| < 1
for some prime p distinct from all the pi s, and logp |p| = −2. Then that | · | is in our
basic, but not in F′−1(−1, 0].

Now suppose we have a map from [av] to PΛ as suggested. We then have the following
commutative diagram.

[avU] [←−avU]

[av] [←−av]

PΛ P←−
Λ

(−∞, 1]
←−−−−−
[−∞, 1]

The vertical composites factor via (−∞, 0] and
←−−−−−
[−∞, 0), and we obtain a map F′ as in

Diagram (14).

Discussion 5.11 To test our understanding, consider the following argument:

• [avNA] and [avA] are open/closed complement subspaces in [av].
• Propositions 5.5 and 5.7 characterise [avNA] and [avA].
• Hence, by appealing to the Case-Splitting Lemma 1.6 or otherwise, conclude

that [av] ∼= PΛ .

This proof strategy imitates what we did in Section 4, yet Observation 5.10 tells us that
the argument is wrong. So where does it fail? Recall: in Section 4, we defined a map

f̂ : [←−av] −→ P←−
Λ

(16)

| · | 7−→
(
p|·|, λ|·|

)
by verifying that p|·|, λ|·| ∈ P←−

Λ
without any initial assumptions on whether | · | is

Archimedean or non-Archimedean. However, our present setting requires λ|·| to be
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a Dedekind, not just an upper real. This was verified in Propositions 5.5 and 5.7 but
notice this argument involves a case-splitting. This is why the argument in Section 4
does not extend to yield a map [av] → PΛ , or indeed [avU] → PΛ . In addition,
the Dedekinds do not form a subspace of the upper reals (cf Discussion 2.3), so the
Case-Splitting Lemma cannot be applied to glue Propositions 5.5 and 5.7 together in
order to assemble the desired map.

A related question looks at the spectra. The reader may reasonably wonder: does
ISpec still play a role in the analysis of absolute values on Q? After all, ISpec is not
mentioned in the statement of Theorem 5.8 (unlike Theorem 4.1), and only features
implicitly in its proof. Might we not eg use the Zariski spectrum LSpec(Z) instead to
denote the non-Archimedean places of Q?

The answer comes from a closer examination of the maps from [av] to the other spectra.
We know already that [av] has a map to ISpec, via [←−av] and P←−

Λ
. Can we use the

Dedekind property to find a map to either LSpec or FSpec? Again, we can find a
negative answer by restricting to [avU]. Of course, we already know that there is a map
from [avNA] to spec+(Z), and hence to the other three spectra. The problem comes
when we try to bring in the trivial absolute value.

Observation 5.12 (coZariski versus Zariski/Constructible Topology) There is no
map from [avU] to LSpec(Z) that maps | · |0 to Z− {0}, and each | · |αp to the prime
filter of integers not divisible by p.

It follows that there is no map to FSpec(Z) with the corresponding properties.

Proof Suppose there did exist such a map

f : [avU]→ LSpec(Z).

Now consider the open in LSpec(Z) comprising all those prime filters containing 2. It
has the prime filters corresponding to all non-zero primes except 2, as well as the top
filter Z− {0}. Let U be its inverse image under f .

Again, U is a join of basics corresponding to propositions as in condition (15). Hence
| · |0 is in one of those basics, which must have qi < 0 < ri for every i – and the values
ri are then irrelevant. We can now find a 2-adic | · | such that

log2 |2| > max
i

qi

and this | · | is in our basic open. That’s a contradiction, since its image under f is a
(the) prime filter not containing 2.
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Discussion 5.13 Informally, Observation 5.12 holds because such a map requires us to
decide, given some generic | · | ∈ [avU], whether | · | is trivial or non-trivial, which
we can only do after verifying that |p| = 1 for all non-trivial primes p. This, however,
requires universal quantification and is therefore non-geometric.

6 Further Remarks and Discussion

Our discussion after Theorem 5.8 gives an overview of how Dedekind absolute values
interact with the “edge cases”. While perhaps unsurprising that [av] does not include
the p-characteristic absolute values (Discussion 5.9), it was unexpected (at least to
the authors) how the trivial absolute value is enmeshed with topological subtleties.
Extending Observation 5.10, we pose the obvious test problem:

Problem 6.1 Characterise the (entire) space [av], including the trivial absolute value.

Discussion 6.2 In number theory, much has already been said regarding the difficulties
reconciling Archimedean versus the non-Archimedean structures (see eg the introduction
of Mazur [9]), which is often viewed as being bound up with the differences between the
analytic versus the algebraic setting. Observations 5.10 and 5.12 highlight a different
perspective: just reconciling the trivial versus non-trivial non-Archimedean absolute
values itself raises its own difficulties that require some care (at least in the Dedekind
setting).

Perhaps then before we start connecting the Archimedean and the non-Archimedean,
one should first figure out how the trivial absolute value interacts with each component.
An important clue comes from our Ostrowski’s Theorem 4.1 for Z: the trivial absolute
value acts as a kind of hinge point between the Archimedeans and non-Archimedeans
so long as we work with the (honest) upper reals. The challenge then is to adapt this
picture to the Dedekind absolute values (Discussion 2.3 may be relevant here). After
which, it will be very interesting to meditate on how our characterisation of [av] may
tell us something useful about connecting the analytic with the algebraic.

Discussion 6.3 As alluded to in the introduction, the issue of reconciling trivial versus
non-trivial norms also persists in Berkovich geometry – see eg Berkovich [1, Example
1.4] or the case-split in §3.4 and 3.5 regarding GAGA-type results for trivial versus
non-trivial valuations. A point-free perspective on some of these issues was investigated
in a forthcoming paper [11] – again, the upper reals play a helpful role.
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Might the results of the present paper be understood as suggesting that we should
abandon Dedekind absolute values and simply work with upper-valued absolute values
on Z? We argue no. One important reason is that part of what makes understanding
the Dedekind absolute values so interesting is their connection with Local–Global
Principles from number theory, which is less clear for the non-Dedekind case.

Let us elaborate. A polynomial f with Q-coefficients is said to satisfy the Local-Global
Principle just in case that f has non-trivial rational solutions if and only if f has
non-trivial solutions over all non-trivial completions of Q (up to equivalence). There
are well-known examples of polynomials that satisfy the Local–Global principle (eg
quadratic forms) as well as those that fail it (eg 3x3 +4y3 +5z3 = 0), and improving our
understanding of the obstructions to this principle is a deep and active area of research.

Now, we say that two Dedekind absolute values | · |1, | · |2 of Q belong to the same place
if and only if there exists α ∈ (0, 1] such that | · |1 = | · |α2 or | · |2 = | · |α1 . In particular,
one can verify that any two absolute values from the same place define topologically
equivalent completions of Q. Notice then that our Ostrowski’s Theorem 5.8 for
Q classifies all non-trivial completions of Q up to equivalence, as is relevant for
the Local-Global Principle. Notice also (eg by Discussion 4.3, or the inclusion of
p-characteristic absolute values) that the language of places does not adapt well to the
setting of upper-valued absolute values on Z.

This sets up the following test problem, which will be the focus of a subsequent paper
by the authors.

Problem 6.4 Characterise [places], the space of places of Q.

Discussion 6.5 Observation 5.12 gives us our first important clue. It is natural to
expect there to exist a quotient map

quot : [avU] −→ [placesU]

that sends an ultrametric absolute value to its corresponding place. However, if
[placesU] = LSpec(Z) or FSpec(Z), then Observation 5.12 tells us that no such map
exists. This gives another compelling reason for working with ISpec(Z), as opposed to
the other spectral spaces.
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