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Absoluteness of the Riemann Integral
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Abstract: This article explores the concept of absoluteness in the context of
mathematical analysis, focusing specifically on the Riemann integral on Rn . In
mathematical logic, absoluteness refers to the invariance of the truth value of
certain statements in different mathematical universes. Leveraging this idea,
we investigate the conditions under which the Riemann integral on Rn remains
absolute between transitive models of ZFC —the standard axiomatic system in
which current mathematics is usually formalized. To this end, we develop a
framework for integration on Boolean algebras with respect to finitely additive
measures and show that the classical Riemann integral is a particular case of this
generalized approach. Our main result establishes that the Riemann integral over
n-rectangles in Rn is absolute in the following sense: if M ⊆ N are transitive
models of ZFC, a, b ∈ Rn ∩M , and f : [a, b] → R is a bounded function in M ,
then f is Riemann integrable in M if, and only if, in N there exists some Riemann
integrable function g : [a, b] → R extending f . In this case, the values of the
integrals computed in each model are the same. Furthermore, the function g is
unique except on a measure-zero set.
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1 Introduction

In mathematical logic, the concept of absoluteness describes the invariance of the
validity of certain statements across different universes of mathematics —or fragments
of mathematics— that we call models. Broadly speaking, a statement is absolute
relative to two models if it retains its validity in both, reflecting a logical stability
that does not depend on the extensions of the model (see Section 2.4). For example,
the so-called ∆0 formulas —those whose quantifiers are bounded— are inherently
absolute. Consequently, many fundamental notions in set theory, such as the empty set,
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union, intersection, Cartesian product of sets, being a function, an ordinal, and even a
natural number, are absolute between any transitive model and V , the universe of set
theory. Although ∆0 formulas are too elementary in a certain sense, there are results
that guarantee the absoluteness of more complex formulas, such as the Mostowski
Absoluteness Theorem and the Shoenfield’s Absoluteness Theorem (see eg Mejı́a and
Rivera-Madrid [19]). The first one states that any analytic subset of the Baire space
NN is absolute for transitive models of ZFC —the standard axiomatic system in which
current mathematics is usually formalized. The second one states that any Σ1

2 subset of
the Baire space is absolute for certain models of ZFC (see Kechris [10]). Beyond these
results, the absoluteness of more complex formulas is often related to the existence of
so-called large cardinals (see eg Bagaria and Rosch [2], and Bagaria [1]).

The notion of absoluteness transcends the boundaries of set theory and model theory,
significantly influencing areas such as number theory, geometry, topology, and even
the philosophy of mathematics. For instance, absolute definitions of natural numbers
ensure their stability across a wide variety of models, providing a robust foundation for
arithmetic analysis even in more general contexts, such as non-standard analysis, which
has applications in many diverse areas of mathematics (see eg Loeb and Wolff [18]). In
geometry and topology, the notion of absoluteness enables the identification of certain
geometric properties that remain invariant with respect to the considered universe. This
makes the concept a valuable tool in the interaction between geometry and model theory
(see eg Chang and Keisler [6], and MacLane and Moerdijk [14]). From a philosophical
perspective, the notion of absoluteness addresses fundamental questions about the
nature of mathematical truth, allowing a distinction between properties that depend on
particular axioms and those that have a universal and invariant character. This approach
provides essential tools for examining the relationship between axioms, definability,
and provability (see eg Lemańska [17], Król [12], and Halbach [7]).

In this paper, we focus on studying the absoluteness of a concept from mathematical
analysis: the Riemann integral. This is unexpectedly motivated by problems related to
forcing theory and consistency proofs. Specifically, in 2000, Saharon Shelah proved
in [22] that a certain cardinal invariant, called the covering number of the null ideal,
may have countable cofinality, thus solving a problem posed by David Fremlin that
had remained open for nearly 30 years (see Uribe-Zapata [23, Section 5.1]). To
achieve this, Shelah introduced a new forcing technique which —without being too
technical— involves the use of finite-support iterations accompanied by finitely additive
measures on P(N), which satisfy certain special conditions. Recently, based on Shelah’s
aforementioned work and another article by Jakob Kellner, Saharon Shelah, and Anda
Tănasie [11], Miguel A. Cardona, Diego A. Mejı́a, and the second author, in [5],
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introduced a general theory of iterated forcing using finitely additive measures1. To
prove one of their main results —specifically, the theorem of extension at successor
steps (see [5, Section 7.2])— it was necessary to rely on the absoluteness of the integral
for certain functions in NN with respect to finitely additive measures on P(N). This
result was not difficult to obtain, as the functions in question were defined on N, which
is absolute for transitive models of ZFC (see Section 2.4). However, the situation is
quite different in the case of the Riemann integral. Since the set of real numbers is
not absolute, if we have two transitive models M ⊆ N of ZFC, and in M we have
a bounded real-valued function defined on some n-rectangle [a, b], then interpreting
f in N may result in f not being defined on the whole [a, b], as new real numbers
may appear in N (see Fact 2.21). This makes the analysis of the absoluteness of the
Riemann integral a more complex problem. In this article, we address it and establish
the following main result, which corresponds to Theorem 3.19.

Theorem 1.1 Let M,N be transitive models of ZFC such that M ⊆ N , and n ∈ N.
Let a = (a0, . . . , an−1) and b = (b0 . . . , bn−1) be in Rn ∩M such that for any i < n,
ai ≤ bi , and [a, b] :=

∏
i<n[ai, bi]. In M , assume that f : [a, b] → R is a bounded

function. Then, f is Riemann integrable in M if, and only if, in N there exists some
Riemann integrable function g on [a, b] extending f . In this case,(∫

[a,b]
f
)M

=

(∫
[a,b]

g
)N

,

where the left value is the result of the Riemann integral computed in M , and the right
one is the result of the integral computed in N . Moreover, g is unique except in a
Lebesgue measure zero set: if in N , g∗ is another Riemann integrable function on
[a, b] extending f , then there exists some measure zero set E ⊆ [a, b] such that for any
x ∈ [a, b] \ E , g∗(x) = g(x).

To prove Theorem 1.1, in the first part of Section 2, we review some elementary
properties of finitely additive measures on Boolean algebras, and in the second part, we
introduce the needed basic notions of absoluteness. Finally, in Section 3, following the
basic ideas to develop the Riemann integral on closed intervals, and based on Uribe-
Zapata [23, Chapter 3], Mejı́a and Uribe-Zapata [20], and [4] —an ongoing project by

1A preliminary version of this general theory of iterated forcing with finitely additive
measures was introduced in the master’s thesis of the second author (see [23]). In this thesis, an
entire chapter was dedicated to the study of integration on Boolean algebras, and some results
concerning the absoluteness of this integral were proven, upon which this article is based (see
[23, Chapter 3]).
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Miguel A. Cardona, Diego A. Mejı́a, and the second author, which conducts an in-depth
study of finitely additive measures and their integrals on Boolean algebras— we define
a notion of integral on Boolean algebras with respect to finitely additive measures, we
prove that this integral is absolute for transitive models of ZFC (see Theorem 3.14),
and that the Riemann integral over rectangles in Rn is a particular case of this integral
(see Theorem 3.12). This framework will allow us to prove several results related to the
absoluteness of our integral over Boolean algebras and, in particular, prove our main
result Theorem 1.1.

2 Preliminaries

In this section, we will introduce the basic notions of finitely additive measures on
Boolean algebras, study some of their fundamental properties, and examine their
relationship with filters and ultrafilters.

We begin by introducing some notation and essential concepts of Boolean algebras.

2.1 Boolean algebras

Recall that B := 〈B,∧,∨,¬, 0B, 1B〉 is a Boolean algebra if B is a non-empty set,
∧,∨ are binary commutative and associative operations on B, ¬ is a unary operation
on B, 1B, 0B ∈ B , and the following properties are satisfied for all a, b, c ∈ B :

(1) Absorption:
(a) (a ∨ b) ∧ b = b,
(b) (a ∧ b) ∨ b = b.

(2) Distributivity:
(a) (a∨ b)∧ c = (a∧ c)∨ (b∧ c),
(b) (a∧ b)∨ c = (a∨ c)∧ (b∨ c).

(3) Identity:
(a) a ∧ 1B = a,
(b) a ∨ 0B = a.

(4) Complementation:
(a) a ∨ ¬a = 1B,

(b) a ∧ ¬a = 0B.

The operations ∧ and ∨ are known as meet and join respectively. Also ∧,∨ and ¬ are
known as the Boolean operations of B .

The canonical example of a Boolean algebra is the power set: Consider a non-empty set
X. Then 〈P(X),∩,∪, c, ∅,X〉 is a Boolean algebra, where c : P(X)→ P(X) is defined
by Ac := X \ A.

Definition 2.1 Let B be a Boolean algebra and a, b ∈ B .
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(1) a \ b := a ∧ ¬b.
(2) a ≤B b if a ∧ b = a.

(3) B+ := B \ {0B}.
(4) a, b are incompatible if a∧b = 0B .

Notice that, \ is a binary operation on B and ≤B is a partial order on B , which allows
us to characterize the values of the operations ∨ and ∧: if a, b ∈ B , then a ∧ b and
a∨b are the infimum and the supremum of {a, b}, respectively, in the sense that they are
the minimum upper bound and the maximum lower bound, respectively, with respect to
the order ≤B . If I is an arbitrary set, and {bi : i ∈ I} ⊆ B , we can define

∨
i∈I bi and∧

i∈I bi in a similar way but, in general, existence is only guaranteed when I is finite. A
Boolean algebra such that every infinite subset has a supremum is called complete, and
a Boolean algebra in which every countable non-empty subset has supremum is called
σ -complete.

Let B be a Boolean algebra. A Boolean sub-algebra of B is a non-empty subset
C ⊆ B that is closed under the Boolean operations of B . Consequently, C is itself a
Boolean algebra, and it contains both 0B and 1B .

Recall that a Boolean homomorphism is a function h : B → C —where B and C are
Boolean algebras— that preserves the Boolean operations, that is, h(a∧b) = h(a)∧h(b),
h(a ∨ b) = h(a) ∨ h(b), and h(¬a) = ¬h(a) for all a, b ∈ B , which implies that
h(0B) = 0C and h(1B) = 1C . A Boolean isomorphism from B into C is a bijective
Boolean homomorphism from B onto C .

Example 2.1 Let X , Y be non-empty sets and h : X → Y a function.

(1) The map fh : P(Y) → P(X) defined by fh(A) := h−1[A] for every A ⊆ Y is
a homomorphism. Furthermore, fh is an isomorphism if, and only if, h is a
bijection.

(2) More generally, if B is a Boolean sub-algebra of P(X), then C := h→(B) is a
Boolean sub-algebra of P(Y), where h→(B) := {A ⊆ Y : h−1[A] ∈ B}, and the
map fh : C → B defined by fh(c) := h−1[c] for every c ∈ C is a homomorphism.
Furthermore, fh is one-to-one if and only if h is onto, and if F[B] = C , then h
is onto, where F : P(X)→ P(Y) is defined by F(A) := h[A] for every A ⊆ X .

As a consequence of Stone’s representation theorem (see eg Bell and Machover [3,
Theorem 4.1]), we can characterize any Boolean algebra using P(X) for some set X .

Theorem 2.2 Every Boolean algebra is isomporhic to a Boolean sub-algebra of P(X)
for some set X.
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The core of the proof of Stone’s representation theorem is the notion of ultrafilter, which
we introduce in the following definition.

Definition 2.3 Let B be a Boolean algebra.

(1) A filter on B is a non-empty set F ⊆ B such that:
(a) if x, y ∈ F, then x ∧ y ∈ F,
(b) if x ∈ F and x ≤B y, then y ∈ F,
(c) 0B /∈ F.

(2) An ultrafilter on B is a filter F ⊆ B such that, for any b ∈ B, either b ∈ F or
¬b ∈ F.

(3) We say that a non-empty set I ⊆ B is an ideal on B if it satisfies the following
conditions:
(a) if x, y ∈ I, then x ∨ y ∈ I,
(b) if x ∈ I and y ≤B x, then y ∈ I,
(c) 1B /∈ I.

Filters and ideals on a Boolean algebra are dual notions in the following sense.

Fact 2.4 Let B be a Boolean algebra and F ⊆ B . Define F¬ := {¬a : a ∈ F}. Then
F is a filter on B if, and only if, F¬ is an ideal on B.

It is straightforward to show that the intersection of all Boolean sub-algebras of B

containing a given subset B is itself a Boolean sub-algebra of B . This sub-algebra,
known as the Boolean sub-algebra generated by B, is the smallest —with respect to
⊆— Boolean sub-algebra of B containing B. This is denoted by 〈B〉B , or simply 〈B〉
when the context is clear. In this setting, B is referred to as the generating set of 〈B〉B .

Since filters are upwards closed and closed under ∧, and ideals are downwards closed
and closed under ∨, we can characterize the Boolean sub-algebra generated by a filter
as follows.

Fact 2.5 Let B be a Boolean algebra. If F ⊆ B is a filter, then 〈F〉 = F ∪ F¬. As a
consequence, F is an ultrafilter on B if and only if 〈F〉 = B.

We close this subsection by introducing the notion of free filter.

Definition 2.6 Let X be a non-empty set. We say that F ⊆ P(X) is a free filter if it is a
filter containing all the co-finite subsets of X . Equivalently, if F¬ is an ideal including
all finite subsets of X .
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2.2 Finitely additive measures on Boolean algebras

Without resorting to the notion of σ -algebra, we can generalize the idea of measure
in the context of Boolean algebras: a measure on a Boolean algebra B is a function
m : B → [0,∞] such that m(0B) = 0 and, if {bn : n ∈ N} ⊆ B is such that∨

n∈N bn ∈ B, then

m

(∨
n∈N

bn

)
=
∑
n∈N

m(bn),

whenever for any i, j ∈ N, if i 6= j, then bi ∧ bj = 0B. If we weaken this condition and
enforce it only for finite sets of elements, we get the notion of finitely additive measures
on Boolean algebras.

Definition 2.7 Let B be a Boolean algebra. A finitely additive measure on B is a
function Ξ : B → [0,∞] satisfying:

(1) Ξ(0B) = 0,
(2) Ξ(a ∨ b) = Ξ(a) + Ξ(b) whenever a, b ∈ B and a ∧ b = 0B .

We say that b ∈ B has Ξ-measure δ if Ξ(b) = δ. In general, we exclude the trivial
finitely additive measure, that is, when talking about finitely additive measures, we will
always assume Ξ(1B) > 0. We will occasionally use the acronym “fam” or “FAM” to
refer to finitely additive measures.

There are several types of finitely additive measures. In the following definition, we
introduce some of them.

Definition 2.8 Let B be a Boolean algebra and Ξ a finitely additive measure on B.

Then:

(1) We say that Ξ is finite if Ξ(1B) <∞.
(2) When Ξ(1B) = 1, we say that Ξ is a probability finitely additive measure.
(3) If Ξ(b) > 0 for any b ∈ B+, we say that Ξ is strictly positive.
(4) If B is a Boolean sub-algebra of P(X), we say that Ξ is a free if, for any x ∈ X ,
{x} ∈ B and Ξ({x}) = 0.

We adopt the name free finitely additive measure in connection with the notion of free
filter (see Definition 2.6).

Example 2.2

Journal of Logic & Analysis 17:6 (2025)
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(1) Let B be a Boolean algebra, Ξ a finitely additive measure on it, and b ∈ B

with positive finite measure. We define the function Ξb : B → [0, 1] by
Ξb(a) := Ξ(a∧b)

Ξ(b) for any a ∈ B . It is clear that Ξb is a finitely additive
probability measure.

(2) Let X be a non-empty set. For a finite non-empty set u ∈ P(X), we define
Ξu : P(X)→ [0, 1] by Ξu(x) := |x∩u|

|u| for any x ∈ P(X). We call this the uniform
measure with support u.

In general Ξu is not strictly positive. To guarantee the existence of more interesting
finitely additive measures, we must require that the Boolean algebra has more structure,
for instance, to be σ -centered. Recall that a Boolean algebra B is σ -centered whenever
B+ can be decomposed as a countable union of ultrafilters on B .

Theorem 2.9 Every σ -centered Boolean algebra admits a strictly positive probability
finitely additive measure.

Proof Let B be a σ -centered Boolean algebra witnessed by {Fn : n ∈ N}. For any
b ∈ B, consider ωb := {n ∈ N : b ∈ Fn} and set Ξ : B → [0, 1] such that

Ξ(b) :=
∑
n∈ωb

1
2n+1 .

Let a, b ∈ B+ such that a∧ b = 0B. It is clear that ωa ∩ωb = ∅ and ωa ∪ωb ⊆ ωa∨b.

Conversely, let m ∈ ωa∨b, so a ∨ b ∈ Fm. If m /∈ ωa and m /∈ ωb, then ¬a ∈ Fm and
¬b ∈ Fm, and therefore, ¬(a ∨ b) = ¬a ∧ ¬b ∈ Fm, which is a contradiction. Thus,
ωa ∪ ωb = ωa∨b , and we can calculate

Ξ(a ∨ b) =
∑

n∈ωa∨b

1
2n+1 =

∑
n∈ωa

1
2n+1 +

∑
n∈ωb

1
2n+1 = Ξ(a) + Ξ(b).

Finally, it is clear that Ξ is strictly positive and, since 1B ∈ Fn for all n ∈ N, ω1B = N,
hence Ξ(1B) = 1, that is, Ξ is a finitely additive probability measure.

In general, proving the existence of interesting finitely additive measures requires the
Axiom of Choice, which relies on non-constructive methods (see eg Lauwers [15]).
In the next section, we will explore the close relationship between finitely additive
{0, 1}-valued measures and ultrafilters, from which finitely additive measures naturally
arise as examples (see Lemma 2.13).

Next, we show some elementary properties of finitely additive measures.
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Lemma 2.10 Let B a Boolean algebra, Ξ a finitely additive measure on B , and
a, b ∈ B . Then:

(1) If a ≤B b then Ξ(a) ≤ Ξ(b).
(2) Ξ(a ∨ b) + Ξ(a ∧ b) = Ξ(a) + Ξ(b).
(3) If Ξ(a ∨ b) <∞, then Ξ(a)− Ξ(b) ≤ Ξ(a \ b) and Ξ(b)− Ξ(a) ≤ Ξ(b \ a).
(4) If n ∈ N and 〈bi : i < n〉 ⊆ B , then

Ξ

(∨
i<n

bi

)
≤
∑
i<n

Ξ(bi).

Furthermore, the equality holds whenever 〈bi : i < n〉 is a sequence of pairwise
incompatible elements of B .

(5) Ξ(1B) = Ξ(b) + Ξ(¬b).

Proof (1): Assume that a ≤B b. Since b = a∨ (b \ a) and a∧ (b \ a) = 0B, we have
that Ξ(a) ≤ Ξ(a) + Ξ(b \ a) = Ξ(b). Thus Ξ(a) ≤ Ξ(b).

(2): Since a = (a∧b)∨(a\b) and (a∧b)∧(a\b) = 0B, we get Ξ(a) = Ξ(a∧b)+Ξ(a\b).
Similarly, we have that Ξ(b) = Ξ(b \ a) + Ξ(b ∧ a). As a consequence,

Ξ(a) + Ξ(b) = [Ξ(a ∧ b) + Ξ(a \ b) + Ξ(b \ a)] + Ξ(a ∧ b) = Ξ(a ∨ b) + Ξ(a ∧ b).

(3): Follows from (2) since Ξ(a)− Ξ(b) = Ξ(a \ b)− Ξ(b \ a).

(4): By an inductive argument, it is enough to prove it only for two elements b0, b1 ∈ B .
By (2), Ξ(b0 ∨ b1) ≤ Ξ(b0 ∨ b1) + Ξ(b0 ∧ b1) = Ξ(b0) + Ξ(b1) and the equality holds
when b0 ∧ b1 = 0B.

(5): Straightforward from (2).

We close this section by showing that we can transfer finitely additive measures using
Boolean homomorphisms.

Definition 2.11
(1) Let B , C be Boolean algebras and f : C → B a Boolean homomorphism. If Ξ

is a finitely additive measure on B, define the finitely additive measure induced
by f and Ξ on C , denoted Ξf , by Ξf (c) := Ξ(f (c)) for all c ∈ C .

(2) Let X , Y be non-empty sets, h : X → Y , B a Boolean sub-algebra of P(X), Ξ a
finitely additive measures on B , and C := h→(B). We define Ξh := Ξfh , where
fh is as in Example 2.1.

Fact 2.12 Ξh is a finitely additive measure. Moreover, Ξh is a probability if and only
if Ξ is a probability. Furthermore, if for any x ∈ X , {x} ∈ B , and h is finite-to-one,
then Ξh is free if and only if Ξ is free.
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2.3 Connections with filters and ultrafilters

In this section, we study the connection that exists between the {0, 1}-valued finitely
additive measures and the ultrafilters on a Boolean algebra.

We start by showing that every filter F naturally induces a finitely additive probability
measure on 〈F〉.

Lemma 2.13 Let B be a Boolean algebra and F a filter on B. Then ΞF : 〈F〉 → {0, 1}
such that, for any b ∈ 〈F〉,

ΞF(b) =


1 if b ∈ F,

0 if b ∈ F¬,

is a finitely additive probability measure. Furthermore, if G is another filter on B, then

F ⊆ G⇔ ΞF ≤ ΞG.

Moreover, if F ⊆ P(X) for some set X then F is free if, and only if, ΞF is free.

Proof Notice that ΞF is well-defined because, by Fact 2.5, 〈F〉 = F ∪ F¬ and those
sets are disjoint. Since F is a filter, by Fact 2.4, F¬ is an ideal, so 0B ∈ F¬, hence
ΞF(0B) = 0. To show that ΞF is a finitely additive measure, let a, b ∈ 〈F〉 such
that a ∧ b = 0B . If a ∈ F, then b ∈ F¬, hence ΞF(a ∨ b) = 1 = ΞF(a) + ΞF(b).
The case a ∈ F¬ and b ∈ F is analogous. If a, b ∈ F¬, then a ∨ b ∈ F¬, that is,
ΞF(a ∨ b) = 0 = ΞF(a) + ΞF(b). Thus, ΞF is a finitely additive measure on 〈F〉, and
clearly ΞF(1B) = 1.

Now, assume that F ⊆ G and let b ∈ 〈F〉. On the one hand, if b ∈ F, then b ∈ G and
therefore, ΞF(b) = 1 = ΞG(b). On the other hand, if b /∈ F, then ΞF(b) = 0 ≤ ΞG(b).
Thus, in any case ΞF(b) ≤ ΞG(b). Conversely, assume that ΞF ≤ ΞG and let b ∈ F,
hence 1 = ΞF(b) ≤ ΞG(b), therefore ΞG(b) = 1, that is, b ∈ G. Thus, F ⊆ G.

Finally, that F is free if and only if ΞF is free follows directly from the definitions of
freeness (see Definition 2.6 and Definition 2.8 (4)).

If we choose a suitable ultrafilter, we can use Lemma 2.13 to construct an example of a
finitely additive measure that is not a measure.
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Example 2.3 Let B be a Boolean sub-algebra of P(X), where X is a countable set,
and let F ⊆ B be an ultrafilter on B. If F is a free on B, then ΞF is a finitely additive
measure on B that is not a measure on B. Indeed, assume that F is a free on B. We
already know that ΞF is a finitely additive measure on B by Fact 2.5 and Lemma 2.13.
Now, since X is countable, we can write X = {xn : n ∈ N}. For any n ∈ N, define
Bn := {xn}. Notice that Bc

n is co-finite, and therefore, Bc
n ∈ F, that is, Bn ∈ F¬.

Thereby, ΞF(Bn) = 0 for any n ∈ N. However, X ∈ F because it is co-finite, hence
ΞF(X) = 1. Thus,

ΞF

(⋃
n∈N

Bn

)
= ΞF(X) = 1 6= 0 =

∑
n∈N

ΞF(Bn).

Consequently, ΞF is not a measure on B .

Conversely (see Lemma 2.13), finitely additive probability measures also induce filters
and in some cases, ultrafilters.

Lemma 2.14 Let B , C be Boolean algebras with C ⊆ B , and Ξ : C → {0, 1} a
finitely additive probability measure. Define FΞ := {c ∈ C : Ξ(c) = 1}. Then:

(1) FΞ is a filter on C .
(2) If ρ is a finitely additive probability measure on C then FΞ ⊆ Fρ if and only if

Ξ ≤ ρ.
(3) 〈FΞ〉 = C .
(4) ΞFΞ = Ξ, where ΞFΞ is as in Lemma 2.13.
(5) FΞF = F , where ΞF is as in Lemma 2.13.
(6) FΞ is an ultrafilter on B if and only if B = C .

Proof (1): Let c, d ∈ FΞ . By Lemma 2.10 2, Ξ(c ∧ d) = 2− Ξ(c ∨ d), and therefore
Ξ(c ∧ d) = 1. Thus, c ∧ d ∈ FΞ. Now, if a ∈ C and c ≤C a, by Lemma 2.10 1,
Ξ(a) ≥ Ξ(c) = 1, hence Ξ(a) = 1. Thus, a ∈ FΞ. Finally, since Ξ(0B) = 0, it follows
that 0B /∈ FΞ. Thus, FΞ is a filter on C .

(2): Let c ∈ C . If ρ(c) < Ξ(c) then c ∈ FΞ and c /∈ Fρ , which shows that FΞ ⊆ Fρ
implies Ξ ≤ ρ. The converse is clear.

(3): By Lemma 2.10 4, if c ∈ C and Ξ(c) = 0 then Ξ(¬c) = Ξ(1C )−Ξ(c) = 1, hence
¬c ∈ FΞ, that is, c ∈ F¬Ξ. Thus, C = FΞ ∪ F¬Ξ = 〈FΞ〉.

(4): Since C = 〈FΞ〉, Ξ and ΞFΞ have the same domain. For c ∈ C , we have that
ΞFΞ(c) = 1⇔ c ∈ FΞ ⇔ Ξ(c) = 1. Thus, ΞFΞ = Ξ.
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(5): It is clear since, for any c ∈ C , c ∈ F if and only if ΞF(c) = 1 if and only if
c ∈ FΞF .

(6): Straightforward.

In general FΞ is not a filter on B . To obtain this, we need to close it upwards.

Corollary 2.15 Let B be a Boolean algebra and C a Boolean sub-algebra of B.

Then every finitely additive probability measure Ξ : C → {0, 1} induces a filter on B,

namely, F↑Ξ := {b ∈ B : ∃c ∈ FΞ(c ≤B b)}.

As a consequence of Lemma 2.14 and Lemma 2.13, we can establish some relations
between the collections of filters, ultrafilters and {0, 1}-valued finitely additive proba-
bility measures associated to a Boolean algebra. However, we need to introduce some
notation first.

Definition 2.16 For a given Boolean algebra B , let UFB be the collection of all
ultrafilters on B . Notice that UFB is partially ordered by inclusion. Similarly, let
FAM0,1,B be the collection of all {0, 1}-valued finitely additive probability measures
on B . Notice that, FAM0,1,B is partially ordered by the point-wise order on functions
≤.

If we apply Lemma 2.14 to ultrafilters we obtain an order-preserving one-to-one
correspondence between finitely additive measures and ultrafilters on a given Boolean
algebra.

Corollary 2.17 For any Boolean algebra B , 〈UFB,⊆〉 and 〈FAM0,1,B,≤〉 are
order-isomorphic via the map ΨB : UFB → FAM0,1,B defined by ΨB(U) := Ξu for
every ultrafilter U on B .

In particular, ultrafilters are particular cases of finitely additive measures.

2.4 Notions of absoluteness

In this subsection, we introduce the basic elements of the notions of absoluteness. A
reader unfamiliar with these notions may refer to Kunen [13] and Jech [8]. We start by
introducing the notion of relativization of a formula to a class.
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Definition 2.18 Let M be a class and ϕ a formula in the language of set theory.
The relativization of ϕ to M, denoted by ϕM, is defined recursively based on the
complexity of ϕ, as follows:

(1) If ϕ is atomic, that is, of the form x = y or x ∈ y, then ϕM := ϕ.
(2) If ϕ = ¬ψ, then ϕM := ¬ψM .
(3) If ϕ = χ∧ψ, then ϕM := χM∧ψM . Similarly for the other logical connectives.
(4) If ϕ = ∃xψ(x), then ϕM := ∃x ∈ M[ψM(x)]. Similarly, for the universal

quantifier.

We now introduce one of the central notions in this paper: absoluteness.

Definition 2.19 Let M and N be classes such that M⊆ N and ϕ a formula in the
language of set theory. Then:

(1) We say that ϕ is absolute for M,N , denoted by M 4ϕ N , if ϕ(x1, ..., xn) is a
formula with at most the free variables x1, ..., xn , and

∀~a ∈Mn[ϕN (~a)⇔ ϕM(~a)],

where ~a = (a1, . . . , an) denotes an n-tuple of elements in M.

(2) ϕ is said to be absolute forM if it is absolute forM,V , where V is the universe
of set theory.

Recall that a class M is transitive if, for any x ∈M and y ∈ x , it follows that y ∈M.
A quantifier of the form “∃y ∈ x” or “∀y ∈ x” is referred to as a bounded quantifier, and
a formula in which all quantifiers are bounded is called a ∆0 formula. These formulas
can be constructed recursively and are well-known to be absolute for transitive classes
(see Kunen [13]). As a result, several elementary set-theoretic notions —such as the
empty set, being a subset, transitive set, function, bijective function, finite set, natural,
rational, or real number, and basic operations like union, intersection, or Cartesian
product— are absolute for transitive classes. On the other hand, we also have that the
sets of natural and rational numbers are absolute for transitive models of ZFC as well,
that is, if M is a transitive class, then NM :=M∩ N = N and QM :=M∩Q = Q.
Somewhat more complex notions, such as being an upper bound of a subset of real
numbers, are also absolute. Using this, we can prove that the notions of supremum and
infimum for subsets of real numbers are also absolute. Specifically,

Lemma 2.20 Let M,N be transitive models of ZFC such that M ⊆ N. If X ∈ M and
X ⊆ RM := R ∩M, then supM(X) = supN(X) and infM(X) = infN(X).
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Proof Let X ∈ M such that X ⊆ RM. It is clear that, in N, supM(X) is a upper bound
of X, so supN(X) ≤ supM(X). Now, towards a contradiction, working in N, assume
that supN(X) < supM(X) and let r ∈ Q such that supN(X) < r < supM(X).

Now, working in M, since the notions of upper bound and rational number are absolute
for transitive models, we have that r is a rational number in M , and it is an upper bound
of X, hence supM(X) ≤ r. This implies that r < r in N, a contradiction. Therefore
supN(X) = supM(X).

Finally, the proof for infN(X) = infM(X) follows similar lines.

We focus now on the notion of real number. Although the sets of natural and rational
numbers are absolute for transitive models, this is not the case for the set of real numbers.
It is well known that this set is not absolute for transitive models of ZFC. For instance,
the forcing method can be used to construct, given a model M of ZFC, an extension N
of M such that RM := R ∩M ( RN := N ∩ R, that is, an extension of M containing
new real numbers not present in M . Similarly for the case of Rn . As a consequence,
the following result holds in general.

Fact 2.21 If M,N are transitive models of ZFC and M ⊆ N , then (Rn)M ⊆ (Rn)N . In
particular, if a, b ∈ Rn∩M and a ≤ b then [a, b]M := [a, b]∩M ⊆ [a, b]N := [a, b]∩N
and [a, b]M is dense in [a, b]N .

In many interesting cases inclusions in Fact 2.21 are strict: (Rn)M ( (Rn)M and
similarly [a, b]M ( [a, b]N .

3 Riemann integration on Boolean algebras

The primary goal of this section is to prove the absoluteness of the Riemann integral
(see Theorem 1.1 and Theorem 3.19) and other related results concerning the absoluteness
of integration over Boolean algebras (see Section 3.3). To achieve this, we will begin
by extending the classical notion of Riemann integral within the framework of Boolean
algebras, as outlined in Mejı́a, Uribe-Zapata and Cardona [4], and in Uribe-Zapata [23,
Chapter 3].
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3.1 Integration on Boolean algebras

In this subsection, fix a Boolean sub-algebra B of P(X) for some non-empty set X ,
and some finitely additive measure Ξ : B → [0, δ], where δ is a positive real number.

We start by defining partitions and their refinements:

Definition 3.1
(1) PΞ is the set of finite partitions of X into sets in dom(Ξ).
(2) If P,Q ∈ PΞ , we say that Q is a refinement of P, denoted by Q� P, if every

element of P can be finitely partitioned into elements of Q.
(3) If P = 〈Pn : n < n∗〉 and Q = 〈Qm : m < m∗〉 are in PΞ, we define:

P u Q :=
⋃
{Pn ∩ Qm : n < n∗ ∧ m < m∗}.

X X X

P Q P u Q

Figure 1: A graphic example of P u Q.

For example, it is clear that {X} ∈ PΞ and if P ∈ PΞ, then P � {X} and P � P.
Moreover,� is a partial order on PΞ. Furthermore, for P,Q ∈ PΞ , PuQ is a common
refinement of P and Q:

Lemma 3.2 If P,Q ∈ PΞ, then P u Q ∈ PΞ and P u Q� P,Q.

We can now define the integral with respect to Ξ:

Definition 3.3 Let f : X → R be a bounded function. We define:

(1) For any P ∈ PΞ ,

SΞ(f ,P) :=
∑
b∈P

sup(f [b])Ξ(b) and SΞ(f ,P) :=
∑
b∈P

inf(f [b])Ξ(b).

(2)
∫

XfdΞ := inf
{

S(f ,P) : P ∈ PΞ
}

and
∫

XfdΞ := sup
{

S(f ,P) : P ∈ PΞ
}

.
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(3) We say that f is Ξ-integrable on X , denoted by f ∈ I (Ξ), if and only if∫
XfdΞ =

∫
XfdΞ. In this case, this common value is denoted by

∫
X fdΞ.

Naturally, when the context is clear, we omit the superscript “Ξ” in “SΞ(f ,P)” and
“SΞ(f ,P)”.

For example, it is clear that any constant function is Ξ-integrable. Concretely, if for all
x ∈ X, f (x) = c ∈ R, then

∫
X f (x) dΞ = cΞ(X).

Lemma 3.4 Let f : X → R be a bounded function. If P,Q ∈ PΞ and Q� P, then

S(f ,P) ≤ S(f ,Q) ≤ S(f ,Q) ≤ S(f ,P).

As a consequence, S(f ,Q)− S(f ,Q) ≤ S(f ,P)− S(f ,P).

We can use P u Q to get the following result.

Corollary 3.5 If P,Q ∈ PΞ, then S(f ,P) ≤ S(f ,Q). As a consequence, the following
inequality holds: ∫

X
fdΞ ≤

∫
X

fdΞ.

We will now proceed to prove the result we refer to as the Criterion of Ξ-Integrability,
which, analogous to the case of the Riemann integral, allows us to characterize the
Ξ-integrability of a function in terms of the existence of suitable partitions.

Theorem 3.6 Let f : X → R be a bounded function. Then, f is Ξ-integrable if, and
only if, for all ε > 0, there exists a partition P ∈ PΞ such that S(f ,P)− S(f ,P) < ε.

Proof On the one hand, assume that f ∈ I (Ξ) and let ε > 0. By basic properties of
sup and inf, we can find P,Q ∈ PΞ such that∫

X
fdΞ− ε

2
< S(f ,P) and S(f ,Q) <

∫
X

fdΞ +
ε

2
.

Consider R := P uQ. By Lemma 3.2, R ∈ PΞ and it is a common refinement of P and
Q. So, by virtue of Lemma 3.4, S(f ,P) ≤ S(f ,R) and S(f ,Q) ≤ S(f ,R). Therefore,∫

X
fdΞ− ε

2
< S(f ,R) and S(f ,R) <

∫
X

fdΞ +
ε

2
.

Thus, S(f ,R)− S(f ,R) < ε.

On the other hand, let P ∈ PΞ such that S(f ,P)− S(f ,P) < ε. Hence,∫
X

fdΞ ≤ S(f ,P) < S(f ,P) + ε ≤
∫

X
fdΞ + ε.

Since ε is arbitrary, by Corollary 3.5 it follows that f ∈ I (Ξ).
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In fundamental aspects, the integral with respect to finitely additive measures behaves
similarly to the Riemann integral, that is, we have available the basic properties of
the integral such as those presented in Uribe-Zapata [23, Section 3.5], and Mejı́a,
Uribe-Zapata and Cardona [4], for instance:

Lemma 3.7 Let f , g : X → R be Ξ-integrable functions and c ∈ R. Then:

(1) fg and cf are Ξ-integrable and
∫

X(cf )dΞ = c
∫

X fdΞ.
(2) Let {fi : i < n} be a finite sequence of Ξ-integrable functions. Then

∑
i<n fi is

Ξ-integrable and ∫
X

(∑
i<n

fi

)
dΞ =

∑
i<n

(∫
X

fidΞ

)
.

(3) If f ≤ g then
∫

X fdΞ ≤
∫

X gdΞ.

3.2 Riemann integration on Rn

In this Subsection, on the one hand, following the ideas of Munkres [21], we review
some basic notions of Riemann integration over n-rectangles in Rn . On the other hand,
we show that this is a particular case of the integration introduced in Section 3.1.

For the rest of this article, we fix n ∈ N and two points

a = (a0, . . . , an−1), b = (b0, . . . , bn−1)

in Rn such that a ≤ b, that is, for any i < n, ai ≤ bi . We also denote by Λn the
Lebesgue measure on Rn and [a, b] :=

∏
i<n[ai, bi]. A partition of some interval

[x, y] ⊆ R is a finite collection P = {pi : i < m} of increasing real numbers in [x, y] such
that p0 = x and pm−1 = y. Each interval [pi, pi+1] is called a sub-interval determined
by P. Similarly, a partition of the n-rectangle [a, b] is a n-tuple 〈P0, . . . ,Pn−1〉 such
that for any i < n, Pi is a partition of the interval [ai, bi]. If for any i < n, Ii is some
sub-interval determined by Pi , then R :=

∏
i<n Ii is a sub-rectangle of [a, b] determined

by P. Denote by SP the collection of all sub-rectangles of [a, b] determined by P.

If f : [a, b]→ R is a bounded function, for R ∈ SP , define mR(f ) := inf{f (x) : x ∈ R}
and MR(f ) := sup{f (x) : x ∈ R}. We also define

L(f ,P) :=
∑

R∈SP

mR(f )Λn(R) and U(f ,P) :=
∑

R∈SP

MR(f )Λn(R).

We say that f is Riemann integrable if and only if for any ε > 0, there exists some
partition P of [a, b] such that U(f ,P)−L(f ,P) < ε. In this case, we define the Riemann
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integral of f on [a, b], as follows:∫
[a,b]

fdΛn := sup {L(f ,P) : P is a partition of [a, b]} .

Recall that, a function σ : [a, b]→ R is a step function if there exists some partition
P = 〈Pj : j < m〉 of [a, b] such that σ is constant on the interior of each R ∈ SP .
Notice that the value of σ on the boundary of each R is not important for the purposes
of integration, since this boundary has measure zero in Rn . In the following result,
we can characterize Riemann integration in terms of step functions (see eg Jones [9,
Section 7.A.3)]).

Lemma 3.8 A bounded function f : [a, b]→ R is Riemann integrable if and only if
for any ε > 0 there are step functions σ, τ on [a, b] such that σ ≤ f ≤ τ , except on
some measure zero set, and ∫

[a,b]
(τ − σ)dΛn < ε.

To show that the Riemann integral is a particular case of the integration defined
previously in Section 3.1, we introduce the following notation.

Definition 3.9 Let E ⊆ X . We define B|E := {E ∩ b : b ∈ B}, which is a Boolean
sub-algebra of P(E). When E ∈ B , we denote Ξ|E := Ξ�B|E , which is a finitely
additive measure on B|E.

Definition 3.10 Let Rn be the collection of all subsets of Rn which are finite
unions of n-rectangles of the form [c, d) =

∏
i<n[ci, di) with c = (c0, . . . , cn−1),

d = (d0, . . . , dn−1) and c ≤ d in Rn .

Notice that Rn is not a Boolean algebra because, although ∅ ∈ Rn and it is closed
under ∪, ∩, and set difference, Rn /∈ R .

Fact 3.11 Define λn := Λn�Rn . Then:

(1) λn(∅) = 0.
(2) λn

(⋃
m∈N Im

)
=
∑

m∈N λ
n(Im) whenever 〈Im : m ∈ N〉 is a pairwise disjoint

sequence of elements in Rn .
(3) For any c, d ∈ Rn with c ≤ d , λn([c, d)) =

∏
i<n(di − ci).

By Definition 3.9, Rn|[a,b] is a Boolean sub-algebra of P([a, b]) and λn|[a,b] is a finitely
additive measure on P([a, b]). Using this, it follows that the Riemann integral over Rn

is a particular case of our integral over Boolean algebras.
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Theorem 3.12 Let f : [a, b] → R be a bounded function. Then, f is Riemann
integrable if, and only if, it is λn|[a,b] -integrable. In this case,∫

[a,b]
fdΛn =

∫
[a,b]

fdλn|[a,b].

Proof Straightforward using Theorem 3.6.

3.3 Absoluteness of the Riemann integral

In this subsection, we present several results related to the absoluteness of the integral
that we defined in Section 3.1. In particular, we use Theorem 3.12 to prove the main
result in this article: the Riemann integral is absolute for transitive models of ZFC
(see Theorem 1.1 and Theorem 3.19).

We start by proving some preliminaries results in ZFC.

Theorem 3.13 Let B0,B1 ⊆ P(X) be Boolean algebras such that B0 ⊆ B1, and
Ξ0,Ξ1 be finitely additive measures on B0 and B1 , respectively, such that Ξ0 ⊆ Ξ1.

Let f : X → R be a bounded function. Then f ∈ I (Ξ0) implies f ∈ I (Ξ1). In this
case, ∫

X
fdΞ0 =

∫
X

fdΞ1.

The converse implication holds whenever B0 = B1.

Proof For any P ∈ PΞ0 we have that SΞ0(f ,P) = SΞ1(f ,P) and SΞ0
(f ,P) = SΞ1

(f ,P).
Consequently, {SΞ0(f ,P) : P ∈ PΞ0} ⊆ {SΞ1(f ,P) : P ∈ PΞ1} and, in a similar way,
{SΞ0

(f ,P) : P ∈ PΞ0} ⊆ {SΞ1
(f ,P) : P ∈ PΞ1}. Therefore,∫

X
fdΞ1 = inf{SΞ1(f ,P) : P ∈ PΞ1} ≤ inf{SΞ0(f ,P) : P ∈ PΞ0} =

∫
X

fdΞ0, and∫
X

fdΞ0 = sup{SΞ0
(f ,P) : P ∈ PΞ0} ≤ sup{SΞ1

(f ,P) : P ∈ PΞ1} =

∫
X

fdΞ1.

As a consequence,

(1)
∫

X
fdΞ0 ≤

∫
X

fdΞ1 ≤
∫

X
fdΞ1 ≤

∫
X

fdΞ0.

Thus, if f is Ξ0 -integrable, then f is Ξ1 -integrable, and it is clear that their values
coincide.
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To prove the converse, notice that if B0 = B1, then Ξ0 = Ξ1 and PΞ0 = PΞ1 and
therefore, inequalities in (1) ares really equalities. Thus, f ∈ I (Ξ0) if and only if
f ∈ I (Ξ1), and it is clear that the values of the integrals are the same.

We can now prove that the integral with respect to finitely additive measures in Boolean
algebras is absolute for transitive models of ZFC.

Theorem 3.14 Let M,N be transitive models of ZFC such that M ⊆ N. Let B,Ξ,X
in M be such that B ⊆ P(X) is a Boolean algebra and Ξ is a finitely additive measure
on B . If f : X → R is a bounded function in M , then

[f ∈ I (Ξ)]M ⇔ [f ∈ I (Ξ)]N .

In this case, (∫
X

fdΞ

)N

=

(∫
X

fdΞ

)M

.

Proof By Lemma 2.20, we have that

(PΞ)M = (PΞ)N , SM
Ξ (f ,P) = SN

Ξ(f ,P), and SM
Ξ (f ,P) = SN

Ξ(f ,P).

Consequently, {SM
Ξ (f ,P) : P ∈ (PΞ)M} = {SN

Ξ(f ,P) : P ∈ (PΞ)N}, and in a similar way,{
SM

Ξ (f ,P) : P ∈ (PΞ)M} = {SM
Ξ (f ,P) : P ∈ (PΞ)N

}
. Therefore, by taking the infimum

in the first equality and the supremum in the second, we get:(∫
X

fdΞ

)M

=

(∫
X

fdΞ

)N

and
(∫

X
fdΞ

)M

=

(∫
X

fdΞ

)N

,

which proves the result.

Corollary 3.15 Let M,N be transitive models of ZFC such that M ⊆ N . Let
Ξ0,B0 ∈ M and Ξ1,B1 ∈ N. Assume that Ξ0,Ξ1 are finitely additive measures on
B0 and B1 respectively, such that Ξ0 ⊆ Ξ1 and B0 ⊆ B1 ⊆ P(X) for some set
X ∈ M. Let f : X → R be a bounded function in M . Then:

[f ∈ I (Ξ0)]M ⇒ [f ∈ I (Ξ1)]N .

In this case, (∫
X

fdΞ0

)M

=

(∫
X

fdΞ1

)N

.
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We now focus specifically on the Riemann integral on Rn . Notice that the property of
absoluteness for the Riemann integral does not follow directly from Theorem 3.14: if f is
defined on [a, b] in M , as established in Section 2.4, it is possible that [a, b]M ( [a, b]N ,
which implies that when we consider f in N , it could be not defined on the whole
[a, b]N , according to the interpretation of [a, b]N . Therefore, in N , it is necessary to
extend the function and integrate over a larger set. Due to this situation, the proof for
the Riemann integral requires additional effort.

Recall from Example 2.1 and Definition 2.11 that, if h : X → Y is a function and B is
a Boolean sub-algebra of P(X), then the collection h→(B) := {A ⊆ Y : h−1[A] ∈ B}
is a Boolean sub-algebra of P(Y) and, if Ξ is a finitely additive measure on B , then
Ξh is a finitely additive measure on h→(B).

Lemma 3.16 Let X , Y be non-empty sets, h : X → Y a function, BX a Boolean
sub-algebra of P(X), BY := h→(BX), and Ξ a finitely additive measure defined on
BX . Let f : Y → R be a bounded function. Then:

(1) For any P ∈ PΞh , there are P• ∈ PΞh and Q ∈ PΞ such that P• � P and

SΞh(f ,P•) = SΞ(f ◦ h,Q) and SΞh
(f ,P•) = SΞ(f ◦ h,Q).

(2) If h is one-to-one, then for any Q ∈ PΞ there exists some P ∈ PΞh such that

SΞ(f ◦ h,Q) = SΞh(f ,P) and SΞ(f ◦ h,Q) = SΞh
(f ,P).

Proof (1): Let P ∈ PΞh . Define P• := P u {ran h, (ran h)c}. Hence, P• ∈ PΞh , it is a
refinement of P, and for any A ∈ P• , either A ⊆ ran h or A∩ran h = ∅. Consider the set
R := {A ∈ P• : A ⊆ ran h}. Notice that, if A ∈ R then A = h[h−1[A]] and, otherwise,
Ξh(A) = ∅. Define Q := {h−1[A] : A ∈ R}. Clearly Q ∈ PΞ . As a consequence,

SΞh(f ,P•) =
∑
A∈P•

sup(f [A])Ξh(A) =
∑
A∈R

sup(f [A])Ξh(A) +
∑

A∈P•\R

sup(f [A])Ξh(A)

=
∑
A∈R

sup(f
[
h[h−1[A]]

]
)Ξ(h−1[A]) =

∑
B∈Q

sup(f ◦ h[B])Ξ(B)

= SΞ(f ◦ h,Q).

Similarly, SΞh
(f ,P•) = SΞ(f ◦ h,Q).

(2): Assume that h is one-to-tone. Let Q ∈ PΞ . Define P := {h[B] : B ∈ Q}∪{(ran h)c}.
Clearly, P ∈ PΞh , and

SΞh(f ,P) =
∑
A∈P

sup(f [A])Ξh(A) =
∑
B∈Q

sup(f [h[B]])Ξh(h[B])

=
∑
B∈Q

sup(f ◦ h[B])Ξ(B) = SΞ(f ◦ h,Q).
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The proof for the lower sum is similar.

As a consequence, under the conditions of Lemma 3.16, integrability is preserved under
composition as well as the value of the integrals.

Theorem 3.17 Let X , Y be non-empty sets, h : X → Y a function, BX a Boolean
sub-algebra of P(X), BY := h→(BX), and Ξ a finitely additive measure on BX . Let
f : Y → R be a bounded function. Then:

(1) If f ∈ I (Ξh) then f ◦ h ∈ I (Ξ) and∫
Y

fdΞh =

∫
X

f ◦ hdΞ.

(2) If h is one-to-one, then f ◦ h ∈ I (Ξ) implies f ∈ I (Ξh) and∫
X

f ◦ hdΞ =

∫
Y

fdΞh.

Proof (1): Assume that f ∈ I (Ξh) and ε > 0. So we can find a partition P ∈ PΞh

such that SΞh(f ,P)− SΞh
(f ,P) < ε. Let P• ∈ PΞh and Q ∈ PΞ as in Lemma 3.16 1.

Since P• is a refinement of P, by Lemma 3.4,

SΞ(f ◦ h,Q)− SΞ(f ◦ h,Q) = SΞh(f ,P•)− SΞh
(f ,P•) ≤ SΞh(f ,P)− SΞh

(f ,P) < ε.

This shows that f ◦ h is Ξh -integrable by applying Theorem 3.6.

We now deal with the value of the integral. On the one hand, let P ∈ PΞh . By
applying Lemma 3.16 1, we can find P• � P in PΞh and Q ∈ PΞ such that

SΞh
(f ,P) = SΞ(f ◦ h,Q) ≤

∫
X

f ◦ hdΞ ≤ SΞ(f ◦ h,Q) = SΞh(f ,P•) ≤ SΞh(f ,P).

As a consequence,
∫

X f ◦ hdΞ =
∫

Y fdΞh .

(2): Assume that h is one-to-one, f ◦ h is Ξ-integrable, and let ε > 0. By Theorem 3.6,
there exists some Q ∈ PΞ such that SΞ(f ◦ h,Q)− SΞ(f ◦ h,Q) < ε. Consider P ∈ PΞh

as in Lemma 3.16 2. As a consequence,

SΞh(f ,P)− SΞh
(f ,P) = SΞ(f ◦ h,Q)− SΞ(f ◦ h,Q) < ε.

Thus, by Theorem 3.6, f ∈ I (Ξh). Finally, the value of the integral follows by
applying (1).
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Corollary 3.18 Let X,Y be non-empty sets such that X ⊆ Y , BX , BY Boolean
algebras on P(X) and P(Y), respectively, ΞX , ΞY finitely additive measures on BX

and BY , respectively, and g : Y → R a bounded function. Assume that BY ⊆ h→(BX)
and ΞY ⊆ ΞX

h . If g ∈ I (ΞY ) then g�X ∈ I (ΞX) and

(2)
∫

Y
gdΞY =

∫
X

g�XdΞX.

Proof Let h : X → Y be the inclusion function and assume that g ∈ I (ΞY ). Since
BY ⊆ h→(BX) and ΞY ⊆ ΞX

h , by applying Theorem 3.13 it follows that g ∈ I (ΞX
h )

and

(3)
∫

Y
gdΞY =

∫
Y

gdΞX
h .

On the other hand, by Theorem 3.17, we have that g�X = g ◦ h ∈ I (ΞX) and

(4)
∫

Y
gdΞY

h =

∫
X

g�XdΞX.

Finally, (2) follows from (3) and (4).

We are finally ready to prove Theorem 1.1, the main result of this paper.

Theorem 3.19 Let M , N be transitive models of ZFC such that M ⊆ N , n ∈ N, and
a, b ∈ Rn ∩M with a ≤ b. In M , let f be a real-valued function on [a, b]. Then, the
following statements are equivalent:

(1) f is Riemann integrable in M .
(2) In N , there exists some Riemann integrable function g : [a, b]→ R extending f .

If either (1) or (2) holds, then:

(5)
(∫

[a,b]
fdλn|[a,b]

)M

=

(∫
[a,b]

gdλn|[a,b]

)N

.

Moreover, the function g in (2) is unique except in a Lebesgue measure zero set: if g∗

is another Riemann integrable function on [a, b] extending f , then there exists some
Lebesgue measure zero set E ⊆ [a, b] such that, for any x ∈ [a, b] \ E , g∗(x) = g(x).

Proof (2) ⇒ (1): Working in N , assume that g : [a, b]→ R is a Riemann integrable
function extending f . With the intention of applying Corollary 3.18, define X := [a, b]M ,
Y := [a, b], h : X → Y the inclusion map, BX := Rn|X , BY := Rn|[a,b] , ΞX := λn|BX

and ΞY := λn|BY . Clearly, f = g ◦ h, BY ⊆ h→(BX) and ΞY ⊆ ΞX
h , that is, we are
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Rn

R
N

a b

f

Rn

R
M

a b

f

Figure 2: The graph on the right represents the situation from the perspective of M : if f is
Riemann integrable, then it is a continuous function except on a set of measure zero. On the
other hand, the graph on the left illustrates the situation from the perspective of N : with the
appearance of new real numbers in [a, b], the function f is no longer defined over the entire
n-rectangle [a, b].

under the hypothesis of Corollary 3.18, by virtue of which it follows that g◦h ∈ I (ΞX),
or equivalently by Theorem 3.14, [f ∈ I (λn|[a,b])]M . Moreover, by (2) we have that∫

[a,b]
gdλn|[a,b] =

∫
[a,b]M

fdλn|[a,b]M ,

and therefore, by Theorem 3.14 again, it follows that:(∫
[a,b]

fdλn|[a,b]

)M

=

(∫
[a,b]

gdλn|[a,b]

)N

.

(1) ⇒ (2): Intuitively, the situation in this case is illustrated in Figure 2. When we
consider that f is Riemann integrable on [a, b] in M , it follows that f is continuous
except on a Lebesgue measure zero set. However, when interpreting f in the model N ,
the function f is not defined on the entire n- rectangle [a, b], as new real numbers may
appear. Therefore, our proof consists of extending f to these new real numbers in such
a way that its integrability is preserved. To achieve this, we will approximate f using
step functions as follows.

Working in M , assume that f is λn|[a,b] -integrable. For any m ∈ N, we can find step
functions σm, τm on [a, b] such that σm ≤ f ≤ τm , and

(6)
∫

[a,b]
(τm − σm)dλn|[a,b] <

1
m + 1

.

Since each σm and τm are step functions, for any m ∈ N there are a partition Pm of
[a, b] and sequences of real numbers ᾱm = 〈αm,R : R ∈ SPm〉, β̄m = 〈βi,R : R ∈ SPm〉,

Journal of Logic & Analysis 17:6 (2025)



Absoluteness of the Riemann Integral 25

such that, without loss of generality, for any R ∈ SPm and x ∈ R◦ , σm(x) = αm,R and
τm(x) = βm,R , where R◦ denotes the interior of R.

Now, we work in N . For any m ∈ N, let σ∗m, τ
∗
m : [a, b] → R be such that for any

x ∈ [a, b] \
⋃

R∈SPm
R◦ , σ∗m(x) := αm,R0 and τ∗m(x) := βm,R0 , where R0 is the unique

sub-rectangle determined by Pm such that x ∈ R◦0 . If x ∈ R◦ for some R ∈ SPm , we
can define σ∗m(x) and τ∗m(x) arbitrarily. Notice that this makes sense because we can use
the end-points of the partitions to extend Pm to a partition of [a, b] in N . Clearly, σ∗m ,
τ∗m are step functions such that σ∗m ≤ τ∗m , σ∗m�[a, b]M ≤ f ≤ τ∗m�[a, b]M , and since the
integral of step functions is merely a finite sum, for any m ∈ N,
(7)∫

[a,b]
τ∗mdλn|[a,b] =

(∫
[a,b]

τmdλn|[a,b]

)M

and
∫

[a,b]
σ∗mdλn|[a,b] =

(∫
[a,b]

σmdλn|[a,b]

)M

.

Define h : [a, b]→ R by h(x) := infm∈N τ
∗
m(x) whenever x ∈ [a, b]. Using this, we can

introduce the desired extension of f : define g : [a, b]→ R, as follows:

g(x) :=

{
f (x) if x ∈ [a, b]M,

h(x) if x ∈ [a, b] \ [a, b]M.

Let ε > 0 and K ∈ N such that 1
K+1 < ε. It is not hard to check that σ∗K ≤ g ≤ τ∗K

except of a Lebesgue measure zero set, and by (6) and (7), it follows that∫
[a,b]

(τ∗K − σ∗K)dλn|[a,b] <
1

K + 1
< ε.

Thus, g is a Riemann integrable function extending f . Notice that, in this case (5)
follows from the proof of (2) ⇒ (1).

Finally, we deal with the uniqueness of g. Assume that, in N , g∗ is a Riemann-integrable
function on [a, b] extending f . Consider Eg and Eg∗ as the set of discontinuities of g
and g∗ , respectively. Set E := Eg ∪ Eg∗ , whose Lebesgue measure is zero. Let ε > 0
and x ∈ [a, b] \ E . Pick some sequence points with rational coordinates 〈xm : m ∈ N〉
in [a, b] converging to x . Since g and g′ are continuous at x , it follows that:

g∗(x) = g∗
(

lim
m→∞

xm

)
= lim

m→∞
g∗(xm) = lim

m→∞
g(xm) = g

(
lim

m→∞
xm

)
= g(x).

Thus, g = g∗ on [a, b] \ E .

By applying Theorem 3.19 to N = V , we get the following result:
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Corollary 3.20 Let M be a transitive model of ZFC, n ∈ N, and a, b ∈ Rn ∩M with
a ≤ b. In M , let f be a real-valued function on [a, b]. Then, the following statements
are equivalent:

(1) f is Riemann integrable in M .
(2) There exists some Riemann integrable function g : [a, b]→ R extending f .

If either (1) or (2) holds, then:

(8)
∫

[a,b]
gdλn|[a,b] =

(∫
[a,b]

fdλn|[a,b]

)M

.

Moreover, the function g in (2) is unique except in a Lebesgue measure zero set: if g∗

is another Riemann integrable function on [a, b] extending f , then there exists some
Lebesgue measure zero set E ⊆ [a, b] such that, for any x ∈ [a, b] \ E , g∗(x) = g(x).

There is an alternative proof of (2) ⇒ (1) in Theorem 3.19 using approximations with
step functions. In the following remark, we outline a sketch of this proof.

Remark Assume the same hypothesis as in Theorem 3.19. We say that a step function
σ on [a, b] is rational if its constant values and the endpoints of the partitions defining
it —except possibly for the end-points ai and bi for i < n— are rational numbers.
Observe that, for any step function σ and any ε > 0, we can construct rational step
functions σε,− and σε,+ such that σε,− ≤ σ ≤ σε,+ , and∫

[a,b]
σdλn|[a,b] − ε ≤

∫
[a,b]

σε,−dλn|[a,b] and
∫

[a,b]
σdλn|[a,b] + ε ≥

∫
[a,b]

σε,+dλn|[a,b] .

Working in N , assume that g is a Riemann integrable function extending f and let
ε > 0. We can find step functions σ, τ : [a, b]→ R such that σ ≤ g ≤ τ and∫

[a,b]
(τ − σ)dλn|[a,b] <

ε

2
.

Working in M now, consider σε,− and τε,+ rational step functions as above, where
ε := ε

4 . Since rational numbers are absolute for transitive models of ZFC, we have that,
σε,− and τε,+ are step functions such that σε,− ≤ f ≤ τε,+ and∫

[a,b]
(τε,+ − σε,−)dλn|[a,b] < ε.

Thus, f is Riemann integrable in M .
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We now deal with the value of the integrals. Without loss of generality, we can assume
that f and g are non-negative functions. On the one hand, working in N , let ρ be a step
non-negative step function on [a, b] such that ρ ≤ g and ε > 0. Then,∫

[a,b]
gdλn|[a,b] ≥

∫
[a,b]

ρdλn|[a,b]

Now, in M we have that ρε,− is step function such that ρε,− ≤ f , and therefore,(∫
[a,b]

fdλn|[a,b]

)M

≥
(∫

[a,b]
ρε,−dλn|[a,b]

)M

=

∫
[a,b]

ρε,−dλn|[a,b] ≥
∫

[a,b]
ρdλn|[a,b]−ε.

Finally, since ε is arbitrary, it follows that(∫
[a,b]

fdλn|[a,b]

)M

≥
(∫

[a,b]
gdλn|[a,b]

)N

.

The proof for the converse inequality is similar by considering the extension of step
functions as in the proof of (1) ⇒ (2) in Theorem 3.19.

We complete this paper by stating some natural questions that arose from Theorem 3.19.

Question 3.21

(1) Can we extend Theorem 3.19 to bounded, rectificable and open sets in Rn ?
(2) Is the Riemann-Stieltjes integral absolute for transitive models of ZFC?
(3) Is the Henstock–Kurzweil integral absolute for transitive models of ZFC (see eg

[16])?
(4) Is the Lebesgue integral on Rn absolute for transitive models of ZFC?

Question 3.21 (4) is particularly interesting. Although one approach to defining the
Lebesgue integral involves simple functions, the methods used to prove Theorem 3.19
do not apply in this case. For instance, if M ⊆ N are transitive models of ZFC and
N contains a Cohen real over M , then [a, b]M has Lebesgue measure zero in N . This
makes the information provided by f completely irrelevant —in the context of the
Lebesgue integral— for defining a potential function g as in Theorem 3.19, because
there are functions that are Lebesgue integrable and discontinuous everywhere. This
suggests that the uniqueness achieved previously for the Riemann integral probably does
not hold for the Lebesgue integral, since for this the characterization of integrability in
terms of continuity, provided by the Lebesgue-Vitali theorem, is absolutely fundamental.
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