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1 Introduction

Let # and H' be (some) nonstandard hulls of *metric spaces (M, d) and (M’,d’) re-
spectively and M a subspace of H. Following Fajardo and Keisler [6, Definition 4.14],
we say that a mapping f : M — H' is uniformly liftable if there exists an internal
mapping ¢ : M — M’ such that for every equivalence class 1 € M the image ¢[u]
is contained in f(u); the mapping ¢ in this case is said to be a uniform lifting of f. It
is easily checked that every uniformly liftable mapping is continuous. The converse is
not true:

Example 1.1 Let d be a {0, 1}-valued *metric on *N and let
H={{x}: xe*N}

be the nonstandard hull of (*N,d). (Here and in the following N denotes the set of
nonnegative integers.) It is clear that the mapping f : H — H defined by f({x}) =
{xn)}, where yn : *N — {0, 1} is the characteristic function of N, is continuous
but not uniformly liftable.

By [5, Proposition 4.12] and [6, Corollary 4.8, Theorem 4.18] every continuous
mapping f : M — H’' defined on a compact set M is uniformly liftable. More
generally, we have the following result: (We assume that our nonstandard universe
(V(2), V(*=), ) is k-saturated, where k is an uncountable cardinal.)

Published: April 2011 doi: 10.4115/j1a.2011.3.4


http://www.ams.org/mathscinet/search/mscdoc.html?code=03H05, 54J05,(54C20, 54D20, 54D65)
http://www.ams.org/mathscinet/search/mscdoc.html?code=03H05, 54J05,(54C20, 54D20, 54D65)
http://dx.doi.org/10.4115/jla.2011.3.4

2 Alexander P Pyshchev

Proposition 1.2 Let f : M — H' be a continuous mapping from a subspace M of
the nonstandard hull H of a *metric space (M, d) around ¢ € M into the nonstandard
hull H' of a *metric space (M',d’) around ¢’ € M'. If M has a dense subspace of
cardinality < k and | M| < |V(Z)|, then f is uniformly liftable.

Proof Assume first that f is an isometric embedding of M into H’. Let D be a dense
subspace of M of cardinality < x. For every y € D choose x, € p and y,, € f(u).
For every (11,n) € D x N let ¥, , be an internal set consisting of all internal mappings
v : H— M’ with the following properties:

(i) H is a hyperfinite subset of M containing x,,;
(i) POeu) = yus
(i) |d'(¥@), () — dx,y)| < 1/(n+1) forall (x,y) € H*.

If F C D is finite, then the mapping & : {x, : p € F} = M', {p(x,) = yu, isin
W, forevery (u,n) € F x N. By x-saturation there exists a mapping v : Hy — M’
which belongs to the intersection of all ¥, ,,. Since D is dense in M, by w; -saturation
Hj intersects with every p € M. Since Hj is hyperfinite, by transfer there exists an
internal mapping r : M — Hy such that

d(x, r(x)) = min{d(x,y) : y € Hp}

for every x € M it follows that x € u € M implies r(x) € p. Itis easily checked that
¢ = 1 o r is a uniform lifting of some mapping g : M — H'. Since g is uniformly
liftable, it is continuous. Mappings f and g coincide on D, and since D is dense in
M, we have f = g. Thus ¢ is a uniform lifting of f.

Now we turn to the general case. Since |[M| < |[V(E)], there exist isometries & :
M — X and K : f[M] — X', where metric spaces X and X’ are in V(Z). Let e
and ¢’ denote the canonical embeddings of X and X’ into their nonstandard hulls. Let
¥ : M — *X be a uniform lifting of an isometry eo h : M — ¢[X]. Since f is
continuous, f[M] has a dense subspace of cardinality < . Therefore, there exists a
uniform lifting ) : *X’ — M’ of an isometry (¢/ o k')~ : ¢'[X'] — fIM]. Itis clear
that
¢=1o*(hofoh oy

is a uniform lifting of f. |

The condition |[M| < |V(Z)| in Proposition 1.2 is redundant, see Theorem 1.8 below.

See Henson and Moore [11] and Baratella and Ng [2] for some related results in the
context of nonstandard hulls of *normed spaces.
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Uniform liftings of continuous mappings 3

Our goal is to extend Proposition 1.2 to a more general class of spaces that includes
other types of nonstandard hulls, in particular, nonstandard hulls of topological vector
spaces [10]. Following Gordon [7], we consider topological spaces obtained as sub-
spaces of quotients of internal sets by H(l)(fi) equivalence relations. (A set is said to be
H(l)(m) (resp. H?) if it is the intersection of < x (resp. < w) internal sets.) If R is
a H(l)(n) equivalence relation on internal set M, then for every M C M /R and every
Z C M we put
Om@) ={peM: nCz},

stmZ)={peM: unz+0}.
An easy argument shows that
{Op/r(T): T C M is internal }

is the base of some Hausdorff topology on M/R. (Note that all equivalence classes
uw € M/R are H(l)(n) and apply k-saturation.) We call this topology the canonical
topology on M /R. 1t follows from Proposition 2.4 below that this topology is generated
by some family of pseudometrics and hence is Tychonoff.

Example 1.3 Let (#,d?) be the nonstandard hull of *metric space (M,d) around
c € M. Then

R=d ' (uz(0) = [{(x,») € M* : d(x,y) < 1/(n+ 1)}
neN

is a H? equivalence relation on M and H C M/R. We claim that the topology
generated by d? coincides with that induced by the canonical topology on M/R. Fix
u € H and x € p; put

b(x,n) ={y e M: d(x,y) <1/(n+ 1)},
B(u,n)={v e H: d(u,v) <1/(n+ 1)}.

If T C M is internal and ¢ C T, then by wj-saturation there exists n € N so that
uw C bx,n) C T, and it follows that u € B(u,n) C Opyr(T) N H. On the other
hand, u € Oy r(b(x,n+ 1)) C B(u, n) for every n € N, and the proof of our claim is
complete.

Example 1.4 Let (K,7) be a compact Hausdorff space, K € V(Z). Assume that

there exists a base B of topology 7 of cardinality < «. It is well-known that *X is the
disjoint union of monads px(x), x € K; let R = | J, g ik (x)? be the corresponding
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4 Alexander P Pyshchev

equivalence relation. Let P denote the family of all pairs (U, V) € B? such that
clU C V, where cl U is the closure of U in K. We have
R= (] "V2U*K\cUY,
(U,V)eP

therefore, R is H(f(/i). It is easily checked that the mapping e defined by e(x) = g (x)
is a homeomorphism of K onto *K/R endowed with the canonical topology.

Example 1.5 Let (X, 7) be a Tychonoff space, X € V(E). Assume that there exists
a base B of topology 7 of cardinality < x. By [4, Theorem 3.5.2] there exists a
compact Hausdorff space (K, 7’) containing (X, 7) as a subspace and such that there
exists a base of topology 7’ of cardinality < . By [4, Theorem 3.5.3] we may
also assume that K € V(Z). By the previous example Rg = Uxe % uK(x)2 is H?(ﬁ;),
therefore, the equivalence relation R = Rg N *X? on *X is also H?(m). For every
x € X we have uy(x) = *X N ug(x), hence px(x) € *X/R. As in the case of compact
spaces, the mapping e : X — *X/R, e(x) = ux(x), is a homeomorphism of X onto
{ux(x): x € X}.

Example 1.6 Let £ € V(Z) be a vector space (over F = R or C) and 7 a Hausdorff
topology on E such that (E, 7) is a topological vector space. Assume that the filter of
neighborhoods of 0 € E has a base By of cardinality < . Then

R={(x,y) € "E*: x—y € pp(O)} = (] {(x,y) € "E*: x—y € *U}
UeBy

isa H(l)(/i) equivalence relation on *E. The nonstandard hull of (E, 7) is a topological
vector space (£, ) defined by

E={uc*E/R: u C fin(*E)},

where
fin("E) = {x € E : ex € ug(0) for every € € up(0)};

the filter of neighborhoods of p£(0) in E is generated by the sets stz(*U), U € By,
see Henson [10]. It is easily checked that the nonstandard hull topology 7 coincides
with that induced by the canonical topology on *E/R. (Apply Lemma 2.5 below.)

For further examples see Luxemburg [12], Henson [9], Gordon [7, 8], Mlcek and
Zlatos [13], and Ziman and Zlatos [14].

Let R (resp. R') be a H?(/{) equivalence relation on an internal set M (resp. M’) and
f a mapping from M C M/R into M’/R’. We say that a mapping ¢ : Z — M’ is
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Uniform liftings of continuous mappings 5

a weak uniform lifting of f if ¢ is an internal mapping with Z = dom ¢ C M such
that u N Z # () and ¢[pu N Z] C f(u) for every p € M. A mapping ¢ is said to be
a uniform lifting of f if ¢ is a weak uniform lifting of f with dom¢ = M. We say
that f is (weakly) uniformly liftable if there exists a (weak) uniform lifting of f. Every
weakly uniformly liftable mapping is continuous, see Proposition 4.2 below.

Gordon [7, Theorem 1.2] proved that if R is a H?(Fd) equivalence relation on an
internal set M such that M /R is compact, then every continuous mapping f : M /R —
fin(*C)/ ~ is uniformly liftable.

We say that a topological space is k-separable if it has a dense subspace of cardinality
< K.

The following are our main results:

Theorem 1.7 Let R (resp. R') be a H?(/@) equivalence relation on internal set M
(resp. M') and M a k-separable subspace of M/R. Then every continuous mapping
f: M — M'/R' is weakly uniformly liftable. Moreover, a weak uniform lifting
¢ :H — M’ of f can be chosen so that H = dom ¢ is a hyperfinite subset of M .

Theorem 1.8 Let R (resp. R') be a H(l)(/@) equivalence relation on internal set M
(resp. M') and M a subspace of M/R. Assume that at least one of the following
conditions is satisfied:

(1) M is r-separable and R is I1V;
(2) M is Lindelof and R’ is 119;
(3) M is compact and M = M/R;

(4) M is separable and metrizable.

Then every continuous mapping f : M — M’ /R’ is uniformly liftable.

Also we show that each of the following conditions (in the context of Theorem 1.8) is
not sufficient for the existence of uniform liftings:

(i) M is separable and f : M — *[0, 1]/ = is continuous;

(ii) M is separable and compact and f : M — M’ is a homeomorphism;

see Example 4.6 below.
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6 Alexander P Pyshchev
2 Generating families of *pseudometrics

Let X be an arbitrary set and let U and V be the subsets of X>. Recall the following
definitions:
Ul ={yeXx’: 0,0 e U},

Uxl={yeX: (x,y) € U},
VoU={(x2) € X?: there exists y € X so that (x,y) € U and (y,z) € V1,
v =y, vrY=u"ouU, n>1.

By Ax we denote the diagonal of X.

Lemma 2.1 Let X be a set and V) = X?,Vi, Vs, ... a sequence of sets such that
Ax CV, =V~ 1 C X% and Vgl C V, foralln > 1. Then there exists a pseudometric
d on X such that d='([0,1/2")) C V,, C d~'([0,1/2"]) foralln > 1.

Proof This is an easy corollary of [4, Theorem 8.1.10]. O

Let R be an equivalence relation on internal set M and {d, : o € A} a family
of *pseudometrics on M. We say that R is generated by {d, : o € A} and that
{da : o € A} is a generating family for R if

R={(x,y) € M?: d(x,y) =~ 0 forevery a € A}

Proposition 2.2 Every H?(n) equivalence relation R on internal set M has a gener-
ating family {d, : o € A} of *pseudometrics on M such that |A| < k.

Proof Let I/ be an internal set consisting of all internal sets U such that Ay C U =
U™ C M* Let {Uy : @ € A} C U be such that |A] < x and R = (,c4 Ua-
We may assume that {U, : a € A} is closed under finite intersections. Clearly,

R C Npea UY . On the other hand, if (x,y) € U forall a € A, then by x-saturation

RIXINRI = (] UalxlNUslyl # 0,
(v, 5)EA?

hence (x,y) € R. It follows that R = (4 U®. By k-saturation for every o € A
there exists 8 € A such that Ug) C U,. Hence for every a € A there exists v € A

such that Ug) - US‘) C U,. Letf : A — A be such that U}?C)x) C U, forevery a € A.
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Uniform liftings of continuous mappings 7

Fix o € A. By wj-saturation there exists an internal sequence (V,)o<,<p consisting
of elements of U/ such that H € *N\ N, V, = M2, VvV, =U,, Vit1 = Upn g for
every n € N\ {0}, and Vf_f_l CV, forevery v < H. Put V,, = Ay forall v > H.
By transfer of Lemma 2.1 there exists a *pseudometric d, on M such that

d;'([0,1/2")r) €V, C d;'([0,1/2"]sg), v > 1.

We have R C d,, "(ur(0)) C U,. It is clear that R is generated by the family
{do: a € A}. O

Proposition 2.3 Every 119 equivalence relation on internal set M is generated by
some *metric d on M.

Proof Applying Proposition 2.2 with k = w;, we obtain a generating family {d, :
n € N} for R. We may assume that all * pseudometrics d, take values in *[0, 1] (e.g.,
we may consider a *pseudometric d,(x,y) = min{d,(x,y), 1} instead of d,). Let
(dy)o<v<m be an internal extension of (d,),en Which also consists of *pseudometrics
on M with values in *[0, 1]. We may assume that dy is a {0, 1}-valued *metric on
M. Put

H
dx,y) = dy(x,y)/2" .
v=0

Clearly, d‘l(uR(O)) C R. On the other hand, if (x,y) € R, then by w -saturation there
exists K € *N\ N, K < H, so that >-5_ d, (x,y)/2"*+! = 0; since then

H

> dxy/2rt <125 &0,
v=K+1

we obtain d(x,y) =~ 0. O
Assume that an equivalence relation R on internal set M is generated by the family
{dy : a € A} of *pseudometrics. For every o € A define d5, : (M/R)2 — [0, 00] by

do(p,v) = °(da(x,y)), XE N, yEWV;

it is easily checked that d2, is a [0, co]-valued pseudometric on M/R.

Proposition 2.4 Let R be a H(f(n) equivalence relation on internal set M and {d,, :
« € A} a generating family of *pseudometrics for R with |A| < k. Then the topology
on M /R generated by pseudometrics dJ,, o € A, coincides with the canonical topology.
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8 Alexander P Pyshchev

Proof Fix x € € M/R and put
b(x,n,0) = {y € M : da(x,y) < 1/(n+ D},

B(u,n,a) ={v e M/R: do(n,v) < 1/(n+ 1)}

If 4 C T, where T is an internal subset of M, then since

p= ()] b&naCT,
(n,a)eNxXA

by k-saturation there exists a finite set F C N x A with ﬂ(n Q)EF b(x,n,a) CT. It
follows that

pe [ Buna)C Oyr(D).
(n,a)eF

On the other hand, for any finite F C N x A we have

peOp( () bwn+1,0)C () Buuno).

(n,0)eF (n,a)€F

The result follows. O

Lemma 2.5 Let R be a H(l)(ﬁ) equivalence relation on internal set M and U an
open in M /R set containing ;1 € M/R. Then there exists an internal set T such that

Proof Easy (see the proof of Proposition 2.4). |

Lemma 2.6 LetR (resp. R') be a H?(m) equivalence relation on internal set M (resp.
M’). Then

R®R ={((x.x),(y,)) € M x M')*: (x,y) € Rand (x',)') € R}
is a I1%(k) equivalence relation on M x M' and the mapping h : (i, i) — pu x p/ is a
homeomorphism of (M /R) x (M'/R") onto (M x M")/(R® R').
Proof Let {d,: o € A} and {d;: B € B} be generating families of “pseudometrics
for R and R’ respectively with |[A| < k and |B| < k. Put
P, X), (v,3) = da(x,y), @ €A,

pa((x, X)), (v,)) = ds(,y), B €B.
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Uniform liftings of continuous mappings 9

Since R ® R’ is generated by {po : @ € A} U{pj : B € B}, itis 9(x). Using
Proposition 2.4 and noting that

polp X p v x V) = do(u,v), o €A,
ps(ux v x V) =dg',v), BeB,

it is easy to check that 4 is a homeomorphism. |

The following important lemma will be used without mentioning:

Lemma 2.7 Let M C (M/R) N (M/R), where R and R are 11%(x) equivalence
relations on internal set M. Then the canonical topologies on M /R and M /R induce
the same topology on M.

Proof Note that M N Oy /p(T) = Op(T) = M N Opyr(T) for every internal T C
M. O

3 k-Separable subspaces and weak uniform liftings

Lemma 3.1 Let R be a H?(ﬁ) equivalence relation on internal set M and M a
subspace of M/R. If M is Lindeldf, then it is k-separable. If M is compact, then
UM =U,emp isa %) set and there exists a hyperfinite set H C M such that
M= StM/R(H)

Proof Assume that M is Lindelof (resp. compact). Let {U, : o € A} be a family
of internal subsets of M? such that [A| < x and R = (0,4 Ua. We may assume that
U,! = U, forevery o € A and that {U,, : a € A} is closed under finite intersections.
Choose x,, € p for every u € M. For every a € A the sets Op(Ualxul), 1 € M,
are open in M and cover M, therefore, there exists a countable (resp. finite) set
Co CM with M = Uueca Om(Ualx,]).

Put D = (J, 4 Co; note that D has cardinality < . We claim that D is dense in M.
Fix p € M and an open in M neighborhood U of ;1. By Lemma 2.5 there exists an
internal set T C M such that ¢ C T and sty(T) C U. By k-saturation there exists
a € A such that U, [x,] C T. There exists v € Co wWith u € Opq(Uqylx,]1). It follows
that x,, € Un[x,] and hence v € U. Thus M is k-separable.

Now we assume that M is compact. For every a € A put W, = Uueca Ualx,].
Clearly, [ JM C W,. Since C, is finite, W, is internal. We claim that (JM =
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10 Alexander P Pyshchev

Naca Wa. Lety € v € (M/R) \ M. Since M is closed in M/R, by Lemma 2.5 and
K -saturation there exists a € A so that U,[y]N|JM = 0, hence y ¢ W,,. Thus | J M
is TI(k).

Since {x, : p € D} C UM, |D| < &, and [JM is I1%k), by k-saturation there
exists a hyperfinite set H with {x, : u € D} C H C [JM. Then sty /z(H) is
a closed subset of M/R such that D C sty /r(H) C M, since D is dense in M,
StM/R(H) =M. O

If 7 and S are internal sets, then by ST
internal mappings ¢ : T — S.

it We denote the internal set consisting of all

Lemma 3.2 Let T be an internal set and A a nonempty subset of T of cardinality
< k. Then the space *[0, 1]%,/R, where R is generated by *pseudometrics d,(x,y) =
|x() — y(a)|, o € A, is compact.

Proof We claim that *[0, 1], /R is homeomorphic to [0, 1]*. Clearly, the mapping
10, i = [0, 114, (w())(@) = °(x(a)),

induces an injection A : *[0,1]1 /R — [0,1]*. By k-saturation & is onto. The
usual topology on [0, 1]4 is generated by pseudometrics po(f,g) = |[f(a) — g(a)|,
a € A, and since dg(u,v) = pa(h(p), h(v)), by Proposition 2.4 mapping h is a
homeomorphism. |

Theorem 3.3 Let M be a x-separable subspace of M /R, where R is a H(l)(n) equiv-
alence relation on internal set M. Then there exists a H?(/ﬁ;) equivalence relation R on
M such that M /R is compact and M C M/R.

Proof Let {d, : o € A} be a generating family of *pseudometrics for R such that
|A| < k (see Proposition 2.2). We may assume that all d,, take values in *[0, 1]. Let
D be a dense subspace of M of cardinality < . Choose x,, € u for every pn € D
and put f, ,(x) = do(x,x,). Let Rbea H?(H) equivalence relation on M generated
by *pseudometrics

O'a,,u(xa y) = lfa,u(x) _fa,,u(y)|> (a,pu) €A XD.

Put F = *[0,1]™.. Let R' be a HO(H) equivalence relation on *[0, 1]mt generated by

nt *
*pseudometrics

pa,u(¢a X) = |¢(fa,u) - X(fa,,u)|a (a, ) € A X D.
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Uniform liftings of continuous mappings 11

By Lemma 3.2 K = *[0, 117, /R’ is compact.

nt

Let  : M — *[0, 1]/, be an internal mapping defined by (8(x))(f) = f(x). Then
Ko = ste(0[M]) is a closed subspace of I and therefore is compact. Note that
Tau(X,y) = pa,u(0(x),0(y)) for every (o, u) € A x D. Using Proposition 2.4, it is
easy to check that 6 induces a homeomorphism of M /R onto K. It follows that M /R

is compact.

In order to prove that M C M/f\’, note that (x,y) € R implies d(x,x,) ~ do(y,x,)
and hence o, ;,(x,y) ~ 0 for every (o, ) € A X D. On the other hand, if x € p € M
and y € M\ p, then d,(x,y) > € forsome a € A and € € R, € > 0; since D is dense
in M, there exists ;1 € D such that d(x,x,) < €/3; then dn(x,,y) > €/2; therefore,
as 0q,,(x,y) % 0, we have (x,y) ¢ R. O

Corollary 3.4 Let M be a separable subspace of some nonstandard hull H of a
*metric space (M, d). Then there exists a *metric d : M*> — *[0, 1] on M such that the
nonstandard hull H of (M, d) is compact and M C H.

Proof Put x = w; in Theorem 3.3 and apply Propositions 2.3 and 2.4. O

Corollary 3.5 Let R be a H?(/@) equivalence relation on internal set M and M a
K -separable subspace of M/R. Then for every closed in M set A C M there exists
a hyperfinite set H C M such that styq(H) = A.

Proof This follows easily from Theorem 3.3 and Lemma 3.1. |

Proof of Theorem 1.7 Since M is k-separable and f is continuous, f[M] is also
k-separable. By Theorem 3.3 there exist H?(m) equivalence relations R and R’ on M
and M’ respectively such that M C M/R, f[M] C M’/R’, and such that the spaces
M/R and M'/R’ are compact. Let F be the closure of f in (M /R) x (M'/R’); since f
is continuous, we have F N (M x (M'/R")) = f. Since F is compact, by Lemmas 2.6
and 3.1 there exists a hyperfinite set  C M x M’ such that

ac |J wxy
(" )EF

and H N (u x p') # 0 forevery (u, /') € F. Let H = dom H. By transfer there exists
an internal mapping ¢ : H — M’ such that (x, ¢(x)) € H for every x € H; it is clear
that ¢ is a weak uniform lifting of f. a
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12 Alexander P Pyshchev

4 Uniform liftings

Proposition 4.1 Let R (resp. R') be a I1%(r) equivalence relation on internal set M
(resp. M'), M a subspace of M/R, and f : M — M'/R’ a mapping. Consider the
following statements:
(1) f is uniformly liftable;
(2) there exists an extension f : M/R — M’ /R’ of f which is continuous at every
we M.

We have (1) = (2) andif M /R and M’ /R are compact, then (1) and (2) are equivalent.

Proof Assume (1). Let ¢ : M — M’ be a uniform lifting of f. Put

® = {(u, 1) € M/R) x (M'JR): ¢ (u x ') # 0;

note that dom® = M/R and ® N (M x (M'/R')) =f. Letf : M/R — M'/R’ be an
arbitrary mapping such that f C ®. Clearly, f is an extension of f. We claim that f is
continuous at every p € M. Let U’ be an open neighborhood of f(). By Lemma 2.5
there exists an internal set 7" C M’ such that f(1) C T" and sty /p/(T") € U'. Put
T = ¢~ '[T']. Then U = Opr(T) is an open neighborhood of u. Fix v € U.
There exists x € v such that ¢(x) € f(z/). We have x € T, therefore, ¢(x) € T' and
fyeu.

Assume (2) and that M/R and M'/R’ are compact. Let F be the closure of f in
(M/R)x(M'/R’). Since f is continuous at every y € M, we have FN(M x (M’ /R")) =
f. By Lemmas 2.6 and 3.1 the set

= |J wuxy
(mp)eF

is H?(/{). Since domII = M, by k-saturation there exists an internal mapping
¢ : M — M’ such that ¢ C II. It is easily checked that ¢ is a uniform lifting of f. O

Proposition 4.2 Let R (resp. R') be a H(l)(/-a) equivalence relation on internal set M
(resp. M") and M a subspace of M /R. Then every weakly uniformly liftable mapping
f:M — M'/R is continuous.

Proof Let ¢ : Z — M’ be a weak uniform lifting of /. Note that M C st), /R(Z). By
Propositions 2.2 and 2.4 the canonical bijection
h:Z/(RNZ*) = styr(Z)

is a homeomorphism. Since ¢ is a uniform lifting of f o h : h~'[M] — M'/R’, by
Proposition 4.1 f o & is continuous. Hence f is also continuous. |
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Lemma 4.3 Let X be a dense subspace of a Hausdorff space X, Y a subspace of a
compact Hausdorff space Y, and f : X — Y a continuous mapping. Then there exists
an extension f : X — Y of f which is continuous at every point of X.

Proof (Itis convenient to use nonstandard analysis at every step.) Let F be the closure
of fin X x ¥. Since X is dense in X and ¥ is compact, dom F = X. Since f is
continuous, F N (X x ¥) = f. Let f : X — ¥ be any mapping such that f C F; then f
is continuous at every point of X. O

Lemma 4.4 Let X be a nonempty closed subspace of metrizable space X. Then
there exists a mapping r : X — X such that r(x) = x for every x € X and which is
continuous at every point of X.

Proof Let d be any compatible metric on X. For every y € X choose r(y) € X so
that d(y, r(y)) < 2d(y,X). m|

Lemma 4.5 Let X be a Lindeléf subspace of a Tychonoff space X and Y a subspace
of a compact Hausdorff space Y. Assume that at least one of the spaces X and Y is
separable and metizable. Then for every continuous mapping f : X — Y there exists
an extension f : X — Y which is continuous at every point of X.

Proof In both cases there exist continuous mappings g : X — Z and h : Z — Y such
that Z C [0,1]Y and h o g = f. (Note that every separable metrizable space embeds
into [0, 11N.) Since X is Lindeldf, by [1, Corollary 16] for every n € N there exists
an extension g, : X — R of g, = pr, o g which is continuous at every point of X. We
may assume that g, : X — [0, 1]. Let g : X — [0, 1] be such that g, = pr, o g for
every n € Nj it is easily checked that g is an extension of g which is continuous at
every point of X.

Let K be the closure of Z in [0,1]N. By Lemma 4.4 there exists a mapping r :
[0, 11N — K such that r(f) = ¢ for every t € K and which is continuous at every point
of K. By Lemma 4.3 we obtain an extension 7 : K — ¥ of & which is continuous at
every point of Z. Itis clear that f = i o r o g is an extension of f which is continuous
at every point of X. O

Proof of Theorem 1.8 Case (1): By Theorem 1.7 there exists a weak uniform lifting
W : H — M’ of f such that H is a hyperfinite subset of M. By Proposition 2.3 there
exists a *metric d on M with R = d~'(jr(0)). Since H is hyperfinite, by transfer there
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exists an internal mapping r : M — H such that d(x, r(x)) = min{d(x,y) : y € H} for
every x € M. Itis clear that ¢ = v o r is a uniform lifting of f.

Cases (2)-(4): Since M is x-separable (apply Lemma 3.1 in cases (2) and (3)), f[M]
is also k-separable. By Theorem 3.3 there exist H?(n) equivalence relations R and
R" on M and M’ respectively such that M C M/R, f[M] C M’/R’, and such that
the spaces M /R and M’/R’ are compact. In view of Proposition 4.1, it suffices to
check that there exists an extension f : M/R — M’/R’ of f which is continuous at
every u € M. In case (3) there is nothing to prove. In cases (2) and (4) we apply
Lemma 4.5. In both cases M is Lindelof (note that every separable metrizable space
is Lindelof). In case (2) f[M] is Lindelof (as a continuous image of Lindelof space)
and M’/R’ is metrizable (by Propositions 2.3 and 2.4), therefore, f[M] is separable
and metrizable (as a Lindelof subspace of metrizable space). |

Example 4.6 Let X be a separable Tychonoff space which is not Lindelof [4, Ex-
amples 3.8.13]. Assume also that X is not almost compact (e.g., consider X x {0, 1}
instead of X). (A Tychonoff space X is said to be almost compact if [3X \ X| < 1.)
By [3, Theorem 1.3] there exist a Tychonoff space Y containing X as a subspace and
a continuous function f : X — R such that there is no extension f : ¥ — R of f
which is continuous at every point of X. By [3, remark on p. 908] we may assume
that f : X — [0, 1]. Let K be the closure of X in 8Y; note that K is separable and
compact. Assume that our nonstandard universe (V(Z), V(*E), x) is k-saturated with
r > 218" and also that BY € V(Z). We claim that the following continuous mappings
are not uniformly liftable (see Example 1.4):

g {ppy® : x € X} = {ppo(r) 1 r€[0,11},  pgy(x) = po,1(F(x)),

h:{pgy®:ye K}t —{ux(®:y €K}, pgy() — px@).

Assume that g is uniformly liftable; using Proposition 4.1, we obtain that there exists
an extension f : B3Y — [0,1] of f which is continuous at every point of X; then
f=7f |Y is also continuous at every point of X, a contradiction.

If & is uniformly liftable, then there exists a mapping r : BY — K such that r(y) =y
for every y € K and which is continuous at every point of K. By Lemma 4.3 there
exists an extension f' : K — [0, 1] of f which is continuous at every point of X.
Define f : Y — [0,1] by f = (f' o r)|Y; it is clear that f is an extension of f which is
continuous at every point of X, a contradiction.
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