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subspaces of nonstandard hulls has a uniform lifting.
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1 Introduction

Let H and H′ be (some) nonstandard hulls of ∗metric spaces (M, d) and (M′, d′) re-
spectively andM a subspace ofH . Following Fajardo and Keisler [6, Definition 4.14],
we say that a mapping f : M → H′ is uniformly liftable if there exists an internal
mapping φ : M → M′ such that for every equivalence class µ ∈ M the image φ[µ]
is contained in f (µ); the mapping φ in this case is said to be a uniform lifting of f . It
is easily checked that every uniformly liftable mapping is continuous. The converse is
not true:

Example 1.1 Let d be a {0, 1}-valued ∗metric on ∗N and let

H = {{x} : x ∈ ∗N}

be the nonstandard hull of (∗N, d). (Here and in the following N denotes the set of
nonnegative integers.) It is clear that the mapping f : H → H defined by f ({x}) =

{χN(x)}, where χN : ∗N → {0, 1} is the characteristic function of N, is continuous
but not uniformly liftable.

By [5, Proposition 4.12] and [6, Corollary 4.8, Theorem 4.18] every continuous
mapping f : M → H′ defined on a compact set M is uniformly liftable. More
generally, we have the following result: (We assume that our nonstandard universe
(V(Ξ),V(∗Ξ), ∗) is κ-saturated, where κ is an uncountable cardinal.)
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2 Alexander P Pyshchev

Proposition 1.2 Let f : M→ H′ be a continuous mapping from a subspace M of
the nonstandard hull H of a ∗metric space (M, d) around c ∈ M into the nonstandard
hull H′ of a ∗metric space (M′, d′) around c′ ∈ M′ . If M has a dense subspace of
cardinality < κ and |M| < |V(Ξ)|, then f is uniformly liftable.

Proof Assume first that f is an isometric embedding ofM into H′ . Let D be a dense
subspace of M of cardinality < κ. For every µ ∈ D choose xµ ∈ µ and yµ ∈ f (µ).
For every (µ, n) ∈ D×N let Ψµ,n be an internal set consisting of all internal mappings
ψ : H → M′ with the following properties:

(i) H is a hyperfinite subset of M containing xµ ;

(ii) ψ(xµ) = yµ ;

(iii) |d′(ψ(x), ψ(y))− d(x, y)| < 1/(n + 1) for all (x, y) ∈ H2 .

If F ⊆ D is finite, then the mapping ξF : {xµ : µ ∈ F} → M′ , ξF(xµ) = yµ , is in
Ψµ,n for every (µ, n) ∈ F×N. By κ-saturation there exists a mapping ψ0 : H0 → M′

which belongs to the intersection of all Ψµ,n . Since D is dense inM, by ω1 -saturation
H0 intersects with every µ ∈ M. Since H0 is hyperfinite, by transfer there exists an
internal mapping r : M → H0 such that

d(x, r(x)) = min{d(x, y) : y ∈ H0}

for every x ∈ M ; it follows that x ∈ µ ∈M implies r(x) ∈ µ. It is easily checked that
φ = ψ0 ◦ r is a uniform lifting of some mapping g :M→ H′ . Since g is uniformly
liftable, it is continuous. Mappings f and g coincide on D, and since D is dense in
M, we have f = g. Thus φ is a uniform lifting of f .

Now we turn to the general case. Since |M| < |V(Ξ)|, there exist isometries h :
M → X and h′ : f [M] → X′ , where metric spaces X and X′ are in V(Ξ). Let e
and e′ denote the canonical embeddings of X and X′ into their nonstandard hulls. Let
ψ : M → ∗X be a uniform lifting of an isometry e ◦ h : M → e[X]. Since f is
continuous, f [M] has a dense subspace of cardinality < κ. Therefore, there exists a
uniform lifting ψ̃ : ∗X′ → M′ of an isometry (e′ ◦ h′)−1 : e′[X′] → f [M]. It is clear
that

φ = ψ̃ ◦ ∗(h′ ◦ f ◦ h−1) ◦ ψ

is a uniform lifting of f .

The condition |M| < |V(Ξ)| in Proposition 1.2 is redundant, see Theorem 1.8 below.

See Henson and Moore [11] and Baratella and Ng [2] for some related results in the
context of nonstandard hulls of ∗normed spaces.
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Our goal is to extend Proposition 1.2 to a more general class of spaces that includes
other types of nonstandard hulls, in particular, nonstandard hulls of topological vector
spaces [10]. Following Gordon [7], we consider topological spaces obtained as sub-
spaces of quotients of internal sets by Π0

1(κ) equivalence relations. (A set is said to be
Π0

1(κ) (resp. Π0
1 ) if it is the intersection of < κ (resp. ≤ ω ) internal sets.) If R is

a Π0
1(κ) equivalence relation on internal set M , then for every M ⊆ M/R and every

Z ⊆ M we put
OM(Z) = {µ ∈M : µ ⊆ Z},

stM(Z) = {µ ∈M : µ ∩ Z 6= ∅}.

An easy argument shows that

{OM/R(T) : T ⊆ M is internal}

is the base of some Hausdorff topology on M/R. (Note that all equivalence classes
µ ∈ M/R are Π0

1(κ) and apply κ-saturation.) We call this topology the canonical
topology on M/R. It follows from Proposition 2.4 below that this topology is generated
by some family of pseudometrics and hence is Tychonoff.

Example 1.3 Let (H, d◦c ) be the nonstandard hull of ∗metric space (M, d) around
c ∈ M . Then

R = d−1(µR(0)) =
⋂
n∈N
{(x, y) ∈ M2 : d(x, y) < 1/(n + 1)}

is a Π0
1 equivalence relation on M and H ⊆ M/R. We claim that the topology

generated by d◦c coincides with that induced by the canonical topology on M/R. Fix
µ ∈ H and x ∈ µ; put

b(x, n) = {y ∈ M : d(x, y) < 1/(n + 1)},

B(µ, n) = {ν ∈ H : d◦c (µ, ν) < 1/(n + 1)}.

If T ⊆ M is internal and µ ⊆ T , then by ω1 -saturation there exists n ∈ N so that
µ ⊆ b(x, n) ⊆ T , and it follows that µ ∈ B(µ, n) ⊆ OM/R(T) ∩ H . On the other
hand, µ ∈ OM/R(b(x, n + 1)) ⊆ B(µ, n) for every n ∈ N, and the proof of our claim is
complete.

Example 1.4 Let (K, τ ) be a compact Hausdorff space, K ∈ V(Ξ). Assume that
there exists a base B of topology τ of cardinality < κ. It is well-known that ∗K is the
disjoint union of monads µK(x), x ∈ K ; let R =

⋃
x∈K µK(x)2 be the corresponding
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equivalence relation. Let P denote the family of all pairs (U,V) ∈ B2 such that
cl U ⊆ V , where cl U is the closure of U in K . We have

R =
⋂

(U,V)∈P

∗V2 ∪ ∗(K \ cl U)2,

therefore, R is Π0
1(κ). It is easily checked that the mapping e defined by e(x) = µK(x)

is a homeomorphism of K onto ∗K/R endowed with the canonical topology.

Example 1.5 Let (X, τ ) be a Tychonoff space, X ∈ V(Ξ). Assume that there exists
a base B of topology τ of cardinality < κ. By [4, Theorem 3.5.2] there exists a
compact Hausdorff space (K, τ ′) containing (X, τ ) as a subspace and such that there
exists a base of topology τ ′ of cardinality < κ. By [4, Theorem 3.5.3] we may
also assume that K ∈ V(Ξ). By the previous example RK =

⋃
x∈K µK(x)2 is Π0

1(κ),
therefore, the equivalence relation R = RK ∩ ∗X2 on ∗X is also Π0

1(κ). For every
x ∈ X we have µX(x) = ∗X ∩ µK(x), hence µX(x) ∈ ∗X/R. As in the case of compact
spaces, the mapping e : X → ∗X/R, e(x) = µX(x), is a homeomorphism of X onto
{µX(x) : x ∈ X}.

Example 1.6 Let E ∈ V(Ξ) be a vector space (over F = R or C) and τ a Hausdorff
topology on E such that (E, τ ) is a topological vector space. Assume that the filter of
neighborhoods of 0 ∈ E has a base B0 of cardinality < κ. Then

R = {(x, y) ∈ ∗E2 : x− y ∈ µE(0)} =
⋂

U∈B0

{(x, y) ∈ ∗E2 : x− y ∈ ∗U}

is a Π0
1(κ) equivalence relation on ∗E . The nonstandard hull of (E, τ ) is a topological

vector space (Ê, τ̂ ) defined by

Ê = {µ ∈ ∗E/R : µ ⊆ fin(∗E)},

where
fin(∗E) = {x ∈ ∗E : εx ∈ µE(0) for every ε ∈ µF(0)};

the filter of neighborhoods of µE(0) in Ê is generated by the sets stÊ(∗U), U ∈ B0 ,
see Henson [10]. It is easily checked that the nonstandard hull topology τ̂ coincides
with that induced by the canonical topology on ∗E/R. (Apply Lemma 2.5 below.)

For further examples see Luxemburg [12], Henson [9], Gordon [7, 8], Mlček and
Zlatoš [13], and Ziman and Zlatoš [14].

Let R (resp. R′ ) be a Π0
1(κ) equivalence relation on an internal set M (resp. M′ ) and

f a mapping from M ⊆ M/R into M′/R′ . We say that a mapping φ : Z → M′ is
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a weak uniform lifting of f if φ is an internal mapping with Z = domφ ⊆ M such
that µ ∩ Z 6= ∅ and φ[µ ∩ Z] ⊆ f (µ) for every µ ∈ M. A mapping φ is said to be
a uniform lifting of f if φ is a weak uniform lifting of f with domφ = M . We say
that f is (weakly) uniformly liftable if there exists a (weak) uniform lifting of f . Every
weakly uniformly liftable mapping is continuous, see Proposition 4.2 below.

Gordon [7, Theorem 1.2] proved that if R is a Π0
1(κ) equivalence relation on an

internal set M such that M/R is compact, then every continuous mapping f : M/R→
fin(∗C)/≈ is uniformly liftable.

We say that a topological space is κ-separable if it has a dense subspace of cardinality
< κ.

The following are our main results:

Theorem 1.7 Let R (resp. R′ ) be a Π0
1(κ) equivalence relation on internal set M

(resp. M′ ) and M a κ-separable subspace of M/R. Then every continuous mapping
f : M → M′/R′ is weakly uniformly liftable. Moreover, a weak uniform lifting
φ : H → M′ of f can be chosen so that H = domφ is a hyperfinite subset of M .

Theorem 1.8 Let R (resp. R′ ) be a Π0
1(κ) equivalence relation on internal set M

(resp. M′ ) and M a subspace of M/R. Assume that at least one of the following
conditions is satisfied:

(1) M is κ-separable and R is Π0
1 ;

(2) M is Lindelöf and R′ is Π0
1 ;

(3) M is compact and M = M/R;

(4) M is separable and metrizable.

Then every continuous mapping f :M→ M′/R′ is uniformly liftable.

Also we show that each of the following conditions (in the context of Theorem 1.8) is
not sufficient for the existence of uniform liftings:

(i) M is separable and f :M→ ∗[0, 1]/≈ is continuous;

(ii) M is separable and compact and f :M→M′ is a homeomorphism;

see Example 4.6 below.
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6 Alexander P Pyshchev

2 Generating families of ∗pseudometrics

Let X be an arbitrary set and let U and V be the subsets of X2 . Recall the following
definitions:

U−1 = {(x, y) ∈ X2 : (y, x) ∈ U},

U[x] = {y ∈ X : (x, y) ∈ U},

V ◦ U = {(x, z) ∈ X2 : there exists y ∈ X so that (x, y) ∈ U and (y, z) ∈ V },

U(1) = U, U(n+1) = U(n) ◦ U, n ≥ 1.

By ∆X we denote the diagonal of X .

Lemma 2.1 Let X be a set and V0 = X2,V1,V2, . . . a sequence of sets such that
∆X ⊆ Vn = V−1

n ⊆ X2 and V (3)
n+1 ⊆ Vn for all n ≥ 1. Then there exists a pseudometric

d on X such that d−1([0, 1/2n)) ⊆ Vn ⊆ d−1([0, 1/2n]) for all n ≥ 1.

Proof This is an easy corollary of [4, Theorem 8.1.10].

Let R be an equivalence relation on internal set M and {dα : α ∈ A} a family
of ∗pseudometrics on M . We say that R is generated by {dα : α ∈ A} and that
{dα : α ∈ A} is a generating family for R if

R = {(x, y) ∈ M2 : dα(x, y) ≈ 0 for every α ∈ A}.

Proposition 2.2 Every Π0
1(κ) equivalence relation R on internal set M has a gener-

ating family {dα : α ∈ A} of ∗pseudometrics on M such that |A| < κ.

Proof Let U be an internal set consisting of all internal sets U such that ∆M ⊆ U =

U−1 ⊆ M2 . Let {Uα : α ∈ A} ⊆ U be such that |A| < κ and R =
⋂
α∈A Uα .

We may assume that {Uα : α ∈ A} is closed under finite intersections. Clearly,
R ⊆

⋂
α∈A U(2)

α . On the other hand, if (x, y) ∈ U(2)
α for all α ∈ A, then by κ-saturation

R[x] ∩ R[y] =
⋂

(α,β)∈A2

Uα[x] ∩ Uβ[y] 6= ∅,

hence (x, y) ∈ R. It follows that R =
⋂
α∈A U(2)

α . By κ-saturation for every α ∈ A
there exists β ∈ A such that U(2)

β ⊆ Uα . Hence for every α ∈ A there exists γ ∈ A

such that U(3)
γ ⊆ U(4)

γ ⊆ Uα . Let f : A→ A be such that U(3)
f (α) ⊆ Uα for every α ∈ A.
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Fix α ∈ A. By ω1 -saturation there exists an internal sequence (Vν)0≤ν≤H consisting
of elements of U such that H ∈ ∗N \ N, V0 = M2 , V1 = Uα , Vn+1 = Uf (n)(α) for
every n ∈ N \ {0}, and V (3)

ν+1 ⊆ Vν for every ν < H . Put Vν = ∆M for all ν > H .
By transfer of Lemma 2.1 there exists a ∗pseudometric dα on M such that

d−1
α ([0, 1/2ν)∗R) ⊆ Vν ⊆ d−1

α ([0, 1/2ν]∗R), ν ≥ 1.

We have R ⊆ d−1
α (µR(0)) ⊆ Uα . It is clear that R is generated by the family

{dα : α ∈ A}.

Proposition 2.3 Every Π0
1 equivalence relation on internal set M is generated by

some ∗metric d on M .

Proof Applying Proposition 2.2 with κ = ω1 , we obtain a generating family {dn :
n ∈ N} for R. We may assume that all ∗pseudometrics dn take values in ∗[0, 1] (e.g.,
we may consider a ∗pseudometric d̄n(x, y) = min{dn(x, y), 1} instead of dn ). Let
(dν)0≤ν≤H be an internal extension of (dn)n∈N which also consists of ∗pseudometrics
on M with values in ∗[0, 1]. We may assume that dH is a {0, 1}-valued ∗metric on
M . Put

d(x, y) =
H∑
ν=0

dν(x, y)/2ν+1.

Clearly, d−1(µR(0)) ⊆ R. On the other hand, if (x, y) ∈ R, then by ω1 -saturation there
exists K ∈ ∗N \ N, K < H , so that

∑K
ν=0 dν(x, y)/2ν+1 ≈ 0; since then

H∑
ν=K+1

dν(x, y)/2ν+1 ≤ 1/2K+1 ≈ 0,

we obtain d(x, y) ≈ 0.

Assume that an equivalence relation R on internal set M is generated by the family
{dα : α ∈ A} of ∗pseudometrics. For every α ∈ A define d◦α : (M/R)2 → [0,∞] by

d◦α(µ, ν) = ◦(dα(x, y)), x ∈ µ, y ∈ ν;

it is easily checked that d◦α is a [0,∞]-valued pseudometric on M/R.

Proposition 2.4 Let R be a Π0
1(κ) equivalence relation on internal set M and {dα :

α ∈ A} a generating family of ∗pseudometrics for R with |A| < κ. Then the topology
on M/R generated by pseudometrics d◦α , α ∈ A, coincides with the canonical topology.
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8 Alexander P Pyshchev

Proof Fix x ∈ µ ∈ M/R and put

b(x, n, α) = {y ∈ M : dα(x, y) < 1/(n + 1)},

B(µ, n, α) = {ν ∈ M/R : d◦α(µ, ν) < 1/(n + 1)}.

If µ ⊆ T , where T is an internal subset of M , then since

µ =
⋂

(n,α)∈N×A

b(x, n, α) ⊆ T,

by κ-saturation there exists a finite set F ⊆ N × A with
⋂

(n,α)∈F b(x, n, α) ⊆ T . It
follows that

µ ∈
⋂

(n,α)∈F

B(µ, n, α) ⊆ OM/R(T).

On the other hand, for any finite F ⊆ N× A we have

µ ∈ OM/R

( ⋂
(n,α)∈F

b(x, n + 1, α)
)
⊆

⋂
(n,α)∈F

B(µ, n, α).

The result follows.

Lemma 2.5 Let R be a Π0
1(κ) equivalence relation on internal set M and U an

open in M/R set containing µ ∈ M/R. Then there exists an internal set T such that
µ ⊆ T ⊆ M and stM/R(T) ⊆ U .

Proof Easy (see the proof of Proposition 2.4).

Lemma 2.6 Let R (resp. R′ ) be a Π0
1(κ) equivalence relation on internal set M (resp.

M′ ). Then

R⊗ R′ = {((x, x′), (y, y′)) ∈ (M ×M′)2 : (x, y) ∈ R and (x′, y′) ∈ R′}

is a Π0
1(κ) equivalence relation on M ×M′ and the mapping h : (µ, µ′) 7→ µ× µ′ is a

homeomorphism of (M/R)× (M′/R′) onto (M ×M′)/(R⊗ R′).

Proof Let {dα : α ∈ A} and {d′β : β ∈ B} be generating families of ∗pseudometrics
for R and R′ respectively with |A| < κ and |B| < κ. Put

ρα((x, x′), (y, y′)) = dα(x, y), α ∈ A,

ρ′β((x, x′), (y, y′)) = d′β(x′, y′), β ∈ B.
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Since R ⊗ R′ is generated by {ρα : α ∈ A} ∪ {ρ′β : β ∈ B}, it is Π0
1(κ). Using

Proposition 2.4 and noting that

ρ◦α(µ× µ′, ν × ν ′) = d◦α(µ, ν), α ∈ A,

ρ′◦β (µ× µ′, ν × ν ′) = d′◦β (µ′, ν ′), β ∈ B,

it is easy to check that h is a homeomorphism.

The following important lemma will be used without mentioning:

Lemma 2.7 Let M ⊆ (M/R) ∩ (M/R̃), where R and R̃ are Π0
1(κ) equivalence

relations on internal set M . Then the canonical topologies on M/R and M/R̃ induce
the same topology on M.

Proof Note that M∩ OM/R(T) = OM(T) = M∩ OM/R̃(T) for every internal T ⊆
M .

3 κ-Separable subspaces and weak uniform liftings

Lemma 3.1 Let R be a Π0
1(κ) equivalence relation on internal set M and M a

subspace of M/R. If M is Lindelöf, then it is κ-separable. If M is compact, then⋃
M =

⋃
µ∈M µ is a Π0

1(κ) set and there exists a hyperfinite set H ⊆ M such that
M = stM/R(H).

Proof Assume that M is Lindelöf (resp. compact). Let {Uα : α ∈ A} be a family
of internal subsets of M2 such that |A| < κ and R =

⋂
α∈A Uα . We may assume that

U−1
α = Uα for every α ∈ A and that {Uα : α ∈ A} is closed under finite intersections.

Choose xµ ∈ µ for every µ ∈ M. For every α ∈ A the sets OM(Uα[xµ]), µ ∈ M,
are open in M and cover M, therefore, there exists a countable (resp. finite) set
Cα ⊆M with M =

⋃
µ∈Cα OM(Uα[xµ]).

Put D =
⋃
α∈A Cα ; note that D has cardinality < κ. We claim that D is dense in M.

Fix µ ∈ M and an open in M neighborhood U of µ. By Lemma 2.5 there exists an
internal set T ⊆ M such that µ ⊆ T and stM(T) ⊆ U . By κ-saturation there exists
α ∈ A such that Uα[xµ] ⊆ T . There exists ν ∈ Cα with µ ∈ OM(Uα[xν]). It follows
that xν ∈ Uα[xµ] and hence ν ∈ U . Thus M is κ-separable.

Now we assume that M is compact. For every α ∈ A put Wα =
⋃
µ∈Cα Uα[xµ].

Clearly,
⋃
M ⊆ Wα . Since Cα is finite, Wα is internal. We claim that

⋃
M =

Journal of Logic & Analysis 3:4 (2011)
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⋂
α∈A Wα . Let y ∈ ν ∈ (M/R) \M. Since M is closed in M/R, by Lemma 2.5 and

κ-saturation there exists α ∈ A so that Uα[y]∩
⋃
M = ∅, hence y /∈ Wα . Thus

⋃
M

is Π0
1(κ).

Since {xµ : µ ∈ D} ⊆
⋃
M, |D| < κ, and

⋃
M is Π0

1(κ), by κ-saturation there
exists a hyperfinite set H with {xµ : µ ∈ D} ⊆ H ⊆

⋃
M. Then stM/R(H) is

a closed subset of M/R such that D ⊆ stM/R(H) ⊆ M; since D is dense in M,
stM/R(H) =M.

If T and S are internal sets, then by ST
int we denote the internal set consisting of all

internal mappings φ : T → S .

Lemma 3.2 Let T be an internal set and A a nonempty subset of T of cardinality
< κ. Then the space ∗[0, 1]T

int/R, where R is generated by ∗pseudometrics dα(x, y) =

|x(α)− y(α)|, α ∈ A, is compact.

Proof We claim that ∗[0, 1]T
int/R is homeomorphic to [0, 1]A . Clearly, the mapping

w : ∗[0, 1]T
int → [0, 1]A, (w(x))(α) = ◦(x(α)),

induces an injection h : ∗[0, 1]T
int/R → [0, 1]A . By κ-saturation h is onto. The

usual topology on [0, 1]A is generated by pseudometrics ρα(f , g) = |f (α) − g(α)|,
α ∈ A, and since d◦α(µ, ν) = ρα(h(µ), h(ν)), by Proposition 2.4 mapping h is a
homeomorphism.

Theorem 3.3 LetM be a κ-separable subspace of M/R, where R is a Π0
1(κ) equiv-

alence relation on internal set M . Then there exists a Π0
1(κ) equivalence relation R̃ on

M such that M/R̃ is compact and M⊆ M/R̃.

Proof Let {dα : α ∈ A} be a generating family of ∗pseudometrics for R such that
|A| < κ (see Proposition 2.2). We may assume that all dα take values in ∗[0, 1]. Let
D be a dense subspace of M of cardinality < κ. Choose xµ ∈ µ for every µ ∈ D
and put fα,µ(x) = dα(x, xµ). Let R̃ be a Π0

1(κ) equivalence relation on M generated
by ∗pseudometrics

σα,µ(x, y) = |fα,µ(x)− fα,µ(y)|, (α, µ) ∈ A× D.

Put F = ∗[0, 1]M
int . Let R′ be a Π0

1(κ) equivalence relation on ∗[0, 1]Fint generated by
∗pseudometrics

ρα,µ(φ, χ) = |φ(fα,µ)− χ(fα,µ)|, (α, µ) ∈ A× D.
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By Lemma 3.2 K = ∗[0, 1]Fint/R′ is compact.

Let θ : M → ∗[0, 1]Fint be an internal mapping defined by (θ(x))(f ) = f (x). Then
K0 = stK(θ[M]) is a closed subspace of K and therefore is compact. Note that
σα,µ(x, y) = ρα,µ(θ(x), θ(y)) for every (α, µ) ∈ A × D. Using Proposition 2.4, it is
easy to check that θ induces a homeomorphism of M/R̃ onto K0 . It follows that M/R̃
is compact.

In order to prove that M ⊆ M/R̃, note that (x, y) ∈ R implies dα(x, xµ) ≈ dα(y, xµ)
and hence σα,µ(x, y) ≈ 0 for every (α, µ) ∈ A×D. On the other hand, if x ∈ µ ∈M
and y ∈ M \ µ, then dα(x, y) > ε for some α ∈ A and ε ∈ R, ε > 0; since D is dense
in M, there exists µ ∈ D such that dα(x, xµ) < ε/3; then dα(xµ, y) > ε/2; therefore,
as σα,µ(x, y) 6≈ 0, we have (x, y) /∈ R̃.

Corollary 3.4 Let M be a separable subspace of some nonstandard hull H of a
∗metric space (M, d). Then there exists a ∗metric d̃ : M2 → ∗[0, 1] on M such that the
nonstandard hull H̃ of (M, d̃) is compact and M⊆ H̃ .

Proof Put κ = ω1 in Theorem 3.3 and apply Propositions 2.3 and 2.4.

Corollary 3.5 Let R be a Π0
1(κ) equivalence relation on internal set M and M a

κ-separable subspace of M/R. Then for every closed in M set A ⊆ M there exists
a hyperfinite set H ⊆ M such that stM(H) = A.

Proof This follows easily from Theorem 3.3 and Lemma 3.1.

Proof of Theorem 1.7 Since M is κ-separable and f is continuous, f [M] is also
κ-separable. By Theorem 3.3 there exist Π0

1(κ) equivalence relations R̃ and R̃′ on M
and M′ respectively such that M ⊆ M/R̃, f [M] ⊆ M′/R̃′ , and such that the spaces
M/R̃ and M′/R̃′ are compact. Let F be the closure of f in (M/R̃)× (M′/R̃′); since f
is continuous, we have F ∩ (M× (M′/R̃′)) = f . Since F is compact, by Lemmas 2.6
and 3.1 there exists a hyperfinite set H̃ ⊆ M ×M′ such that

H̃ ⊆
⋃

(µ,µ′)∈F

µ× µ′

and H̃ ∩ (µ× µ′) 6= ∅ for every (µ, µ′) ∈ F . Let H = dom H̃ . By transfer there exists
an internal mapping φ : H → M′ such that (x, φ(x)) ∈ H̃ for every x ∈ H ; it is clear
that φ is a weak uniform lifting of f .

Journal of Logic & Analysis 3:4 (2011)



12 Alexander P Pyshchev

4 Uniform liftings

Proposition 4.1 Let R (resp. R′ ) be a Π0
1(κ) equivalence relation on internal set M

(resp. M′ ), M a subspace of M/R, and f : M → M′/R′ a mapping. Consider the
following statements:

(1) f is uniformly liftable;

(2) there exists an extension f̃ : M/R → M′/R′ of f which is continuous at every
µ ∈M.

We have (1)⇒ (2) and if M/R and M′/R′ are compact, then (1) and (2) are equivalent.

Proof Assume (1). Let φ : M → M′ be a uniform lifting of f . Put

Φ = {(µ, µ′) ∈ (M/R)× (M′/R′) : φ ∩ (µ× µ′) 6= ∅};

note that dom Φ = M/R and Φ ∩ (M× (M′/R′)) = f . Let f̃ : M/R → M′/R′ be an
arbitrary mapping such that f̃ ⊆ Φ. Clearly, f̃ is an extension of f . We claim that f̃ is
continuous at every µ ∈M. Let U′ be an open neighborhood of f (µ). By Lemma 2.5
there exists an internal set T ′ ⊆ M′ such that f (µ) ⊆ T ′ and stM′/R′(T ′) ⊆ U′ . Put
T = φ−1[T ′]. Then U = OM/R(T) is an open neighborhood of µ. Fix ν ∈ U .
There exists x ∈ ν such that φ(x) ∈ f̃ (ν). We have x ∈ T , therefore, φ(x) ∈ T ′ and
f̃ (ν) ∈ U′ .

Assume (2) and that M/R and M′/R′ are compact. Let F be the closure of f̃ in
(M/R)×(M′/R′). Since f̃ is continuous at every µ ∈M, we have F∩(M×(M′/R′)) =

f . By Lemmas 2.6 and 3.1 the set

Π =
⋃

(µ,µ′)∈F

µ× µ′

is Π0
1(κ). Since dom Π = M , by κ-saturation there exists an internal mapping

φ : M → M′ such that φ ⊆ Π. It is easily checked that φ is a uniform lifting of f .

Proposition 4.2 Let R (resp. R′ ) be a Π0
1(κ) equivalence relation on internal set M

(resp. M′ ) andM a subspace of M/R. Then every weakly uniformly liftable mapping
f :M→ M′/R′ is continuous.

Proof Let φ : Z → M′ be a weak uniform lifting of f . Note that M⊆ stM/R(Z). By
Propositions 2.2 and 2.4 the canonical bijection

h : Z/(R ∩ Z2)→ stM/R(Z)

is a homeomorphism. Since φ is a uniform lifting of f ◦ h : h−1[M] → M′/R′ , by
Proposition 4.1 f ◦ h is continuous. Hence f is also continuous.

Journal of Logic & Analysis 3:4 (2011)



Uniform liftings of continuous mappings 13

Lemma 4.3 Let X be a dense subspace of a Hausdorff space X̃ , Y a subspace of a
compact Hausdorff space Ỹ , and f : X → Y a continuous mapping. Then there exists
an extension f̃ : X̃ → Ỹ of f which is continuous at every point of X .

Proof (It is convenient to use nonstandard analysis at every step.) Let F be the closure
of f in X̃ × Ỹ . Since X is dense in X̃ and Ỹ is compact, dom F = X̃ . Since f is
continuous, F ∩ (X × Ỹ) = f . Let f̃ : X̃ → Ỹ be any mapping such that f̃ ⊆ F ; then f̃
is continuous at every point of X .

Lemma 4.4 Let X be a nonempty closed subspace of metrizable space X̃ . Then
there exists a mapping r : X̃ → X such that r(x) = x for every x ∈ X and which is
continuous at every point of X .

Proof Let d be any compatible metric on X̃ . For every y ∈ X̃ choose r(y) ∈ X so
that d(y, r(y)) ≤ 2d(y,X).

Lemma 4.5 Let X be a Lindelöf subspace of a Tychonoff space X̃ and Y a subspace
of a compact Hausdorff space Ỹ . Assume that at least one of the spaces X and Y is
separable and metizable. Then for every continuous mapping f : X → Y there exists
an extension f̃ : X̃ → Ỹ which is continuous at every point of X .

Proof In both cases there exist continuous mappings g : X → Z and h : Z → Y such
that Z ⊆ [0, 1]N and h ◦ g = f . (Note that every separable metrizable space embeds
into [0, 1]N .) Since X is Lindelöf, by [1, Corollary 16] for every n ∈ N there exists
an extension g̃n : X̃ → R of gn = prn ◦ g which is continuous at every point of X . We
may assume that g̃n : X̃ → [0, 1]. Let g̃ : X̃ → [0, 1]N be such that g̃n = prn ◦ g̃ for
every n ∈ N; it is easily checked that g̃ is an extension of g which is continuous at
every point of X .

Let K be the closure of Z in [0, 1]N . By Lemma 4.4 there exists a mapping r :
[0, 1]N → K such that r(t) = t for every t ∈ K and which is continuous at every point
of K . By Lemma 4.3 we obtain an extension h̃ : K → Ỹ of h which is continuous at
every point of Z . It is clear that f̃ = h̃ ◦ r ◦ g̃ is an extension of f which is continuous
at every point of X .

Proof of Theorem 1.8 Case (1): By Theorem 1.7 there exists a weak uniform lifting
ψ : H → M′ of f such that H is a hyperfinite subset of M . By Proposition 2.3 there
exists a ∗metric d on M with R = d−1(µR(0)). Since H is hyperfinite, by transfer there
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exists an internal mapping r : M → H such that d(x, r(x)) = min{d(x, y) : y ∈ H} for
every x ∈ M . It is clear that φ = ψ ◦ r is a uniform lifting of f .

Cases (2)-(4): Since M is κ-separable (apply Lemma 3.1 in cases (2) and (3)), f [M]
is also κ-separable. By Theorem 3.3 there exist Π0

1(κ) equivalence relations R̃ and
R̃′ on M and M′ respectively such that M ⊆ M/R̃, f [M] ⊆ M′/R̃′ , and such that
the spaces M/R̃ and M′/R̃′ are compact. In view of Proposition 4.1, it suffices to
check that there exists an extension f̃ : M/R̃ → M′/R̃′ of f which is continuous at
every µ ∈ M. In case (3) there is nothing to prove. In cases (2) and (4) we apply
Lemma 4.5. In both cases M is Lindelöf (note that every separable metrizable space
is Lindelöf). In case (2) f [M] is Lindelöf (as a continuous image of Lindelöf space)
and M′/R′ is metrizable (by Propositions 2.3 and 2.4), therefore, f [M] is separable
and metrizable (as a Lindelöf subspace of metrizable space).

Example 4.6 Let X be a separable Tychonoff space which is not Lindelöf [4, Ex-
amples 3.8.13]. Assume also that X is not almost compact (e.g., consider X × {0, 1}
instead of X ). (A Tychonoff space X is said to be almost compact if |βX \ X| ≤ 1.)
By [3, Theorem 1.3] there exist a Tychonoff space Y containing X as a subspace and
a continuous function f : X → R such that there is no extension f̃ : Y → R of f
which is continuous at every point of X . By [3, remark on p. 908] we may assume
that f : X → [0, 1]. Let K be the closure of X in βY ; note that K is separable and
compact. Assume that our nonstandard universe (V(Ξ),V(∗Ξ), ∗) is κ-saturated with
κ > 2|βY| and also that βY ∈ V(Ξ). We claim that the following continuous mappings
are not uniformly liftable (see Example 1.4):

g : {µβY (x) : x ∈ X} → {µ[0,1](r) : r ∈ [0, 1]}, µβY (x) 7→ µ[0,1](f (x)),

h : {µβY (y) : y ∈ K} → {µK(y) : y ∈ K}, µβY (y) 7→ µK(y).

Assume that g is uniformly liftable; using Proposition 4.1, we obtain that there exists
an extension f̂ : βY → [0, 1] of f which is continuous at every point of X ; then
f̃ = f̂ |Y is also continuous at every point of X , a contradiction.

If h is uniformly liftable, then there exists a mapping r : βY → K such that r(y) = y
for every y ∈ K and which is continuous at every point of K . By Lemma 4.3 there
exists an extension f ′ : K → [0, 1] of f which is continuous at every point of X .
Define f̃ : Y → [0, 1] by f̃ = (f ′ ◦ r)|Y ; it is clear that f̃ is an extension of f which is
continuous at every point of X , a contradiction.
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