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Abstract: Working in Bishop’s constructive mathematics, we first show that min-
ima can be defined as best approximations, in such a way as to preserve the
compactness of the underlying metric space when the function is uniformly con-
tinuous. Results about finding minima can therefore be carried over to the setting
of finding best approximations. In particular, the implication from having at most
one best approximation to having uniformly at most one best approximation is
equivalent to Brouwer’s fan theorem for decidable bars. We then show that for
the particular case of finite-dimensional subspaces of normed spaces, these two
notions do coincide. This gives us a better understanding of Bridges’ proof that
finite-dimensional subspaces with at most one best approximation do in fact have
one. As a complement we briefly review how the case of best approximations to a
convex subset of a uniformly convex normed space fits into the unique existence
paradigm.
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1 Introduction

The present paper is set in the realm of Bishop’s constructive mathematics (BISH)1.
Bishop’s constructive framework is distinguished from classical—that is traditional—
mathematics by a strict adherence to intuitionistic logic. This allows us to view BISH
as a generalisation of classical mathematics [43]: adding the law of excluded middle
recovers classical logic.

To start with we recall some background material. Let (X, d) be a metric space. Any
such X is compact if it is totally bounded and complete, where being complete means

1We refer to [13, 14, 21, 24] for a development of constructive analysis in BISH, and to
[1, 16, 27, 42] for constructive alternatives to ZFC.
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2 Matthew Hendtlass and Peter Schuster

that every Cauchy sequence converges. Moreover, a subset S of X is located if for
each z ∈ X the distance

dist(z, S) = inf
x∈S

d(x, z)

from x to S exists. Any totally bounded subset of a metric space is located.

Continuity is a thorny issue in constructive mathematics2. Since the three major
models of BISH—classical mathematics, Brouwer’s intuitionistic mathematics, and the
Russian school of recursive mathematics3—all disagree on which continuity principles
hold, we must be very careful; in particular, in recursive mathematics there is a
continuous function on the unit interval which is not uniformly continuous. In [13],
Bishop elegantly sidesteps this problem by including the uniform continuity theorem
in the definition of continuity: f is a Bishop-continuous function if S is locally totally
bounded and f is uniformly continuous on each compact subset of S . Although this
solution allowed Bishop and his followers to develop a significant body of results, we
will only ever need either pointwise or uniform continuity in this paper; when we refer
to a function as continuous we mean that it is pointwise continuous.

In the following we loosely follow [50]. Let f be a continuous real-valued function on
(a subset S of) X . For the sake of a simpler presentation we assume that f > 0. The
conditional existence problem

If the infimum of f on S is 0, can we construct ξ ∈ S such that f (ξ) = 0?

incorporates, with f : S→ R defined by

f (x) = d (x, z)− dist (z, S) ,

the search for best approximations to a point z of X in a located subset S of X . That
is to say, a best approximation to z in S is nothing but a point of S at which the
uniformly continuous function d ( · , z) : S → R attains its infimum dist (z, S). This,
however, does not mean that a best approximation can always be constructed, even if
S is compact—see below.

A natural first step towards solving the general problem is to construct—using countable
choice—a sequence (xn) in S such that

f (xn) < 1/n

2See, for instance, [48] for more on continuity in constructive analysis.
3See [21] for an introduction to the intuitionistic and recursive schools of mathematics and

their relationship to classical mathematics and Bishop’s constructive mathematics.
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for each n > 1, which is indeed possible whenever f restricted to S has infimum
0. If S is compact, working classically we could then, using the Bolzano-Weierstrass
theorem

BWT Every sequence in a compact metric space has a convergent sub-
sequence,

select a convergent subsequence of (xn), whose limit ξ would moreover satisfy f (ξ) =

0. In fact, the minimum theorem

MIN Every uniformly continuous function on a compact metric space
has a minimum,

which would solve our problem with a single stroke of the pen, is a simple consequence
of BWT. However, MIN, and therefore BWT, is essentially non-constructive [28].4

The non-constructive character of MIN notwithstanding, one can show constructively
that

inf f = inf
x∈X

f (x)

exists whenever f : X → R is uniformly continuous, and X is totally bounded [21,
Chapter 2, Theorem 4.5]. So if we restrict ourselves to continuous functions on compact
spaces our problem becomes

When does a uniformly continuous function on a compact metric space
attain its infimum?

We now drop the assumption that f > 0, but suppose that inf f can be computed. A
function f : X → R is said to have uniformly at most one minimum [49] if

∀ε>0∃δ>0∀x,y∈X
(
max {f (x) , f (y)} < inf f + δ ⇒ d (x, y) < ε

)
or equivalently

∀ε>0∃δ>0∀x,y∈X (d (x, y) > ε⇒ f (x) > inf f + δ ∨ f (y) > inf f + δ) .

If f has uniformly at most one minimum, then f has at most one minimum [9]:

∀ε>0∀x,y∈X∃δ>0 (d (x, y) > ε⇒ f (x) > inf f + δ ∨ f (y) > inf f + δ)

or equivalently
∀x,y∈X (x 6= y⇒ f (x) > inf f ∨ f (y) > inf f ) .

If f has at most one minimum, then any point—if one exists—at which f attains its
infimum is unique; that is, if x, y ∈ X are such that f (x) and f (y) are both equal to
inf f , then x = y.

4An outline of this, including references, can be found e.g. in [49].
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4 Matthew Hendtlass and Peter Schuster

Now let X be complete. As recalled in [49], if f has uniformly at most one minimum,
then f actually has a minimum: that is, f attains its infimum.5 To prove this, one
can construct, with countable choice as in the classical argument discussed before, a
sequence (xn) in X such that

f (xn) < 1/n

for each n > 1. Now the additional hypothesis can be used that f has uniformly at
most one minimum, to show that (xn) is a Cauchy sequence. Since X is complete, (xn)
has a limit ξ in X , for which clearly f (ξ) = inf f .

Hence if X is complete and f has uniformly at most one minimum, then one can
construct the a fortiori unique minimum of f . Even if X fails to be complete, the
given data can be converted into an element of the completion of X : namely, into
the Cauchy sequence (xn) in X . This observation has suggested a way [50]6 to get
by in Bishop-style constructive mathematics without countable choice as proposed by
Richman [44, 45], where completions are defined without sequences.

Being essentially folklore, this problem and its solution have some history. The first
known occurrence is in Theorem 4 of Lifschitz’s [38]—however, there is no proof
in the English translation of the Russian original from 1971. Kreinovich [37] also
refers to a related metatheorem by M.G. Gelfond from 1972. The work of Bridges in
the 1980s was centred around best approximations; see [19] for an overview and for
references. To our knowledge, the next occurrence of this argument is Problem 10,
ascribed to Aczel, in Chapter 2 of Bridges and Richman’s [21]. Uniform uniqueness in
the form of moduli of uniqueness was then used intensively by Kohlenbach from the
early 1990s [34], first also in the context of best approximations.7

Recently unique existence has further occurred in work by Brattka [15] in computable
analysis à la Weihrauch [56], and by Taylor [53] within his abstract Stone duality,
see also [2]. In both cases non–uniform uniqueness suffices because versions of the
Heine-Borel theorem are available. As noticed in [49], the statement

UAM If a uniformly continuous function on a compact metric space has
at most one minimum, then it has uniformly at most one minimum

is indeed equivalent8 to Brouwer’s fan theorem for decidable bars, the paradigmatic
version of the Heine-Borel theorem [21], which can be put as9

5This is analogous to the rule from [34, Theorem 4.4].
6Diener and the second author [26] have applied this to the implicit functions theorem.
7We refer to Kohlenbach and Oliva’s survey [35] and to Kohlenbach’s book [36] for more

recent developments.
8One half of this equivalence corresponds to the rule from [34, Theorem 4.3].
9See, for instance, [11, 32]. FT is the classical contrapositive of the Weak König Lemma.
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FT Every decidable binary tree without an infinite path is finite.

This classification in the spirit of constructive reverse mathematics—as practised by
Ishihara [29, 30, 31] and others10—sharpens an earlier result the second author has
obtained jointly with Berger and Bridges [9]; see also [10, 32, 33, 52].

In the first part of the present note the classification of UAM is carried over from
the context of minima to the more specific context of best approximations that was
considered much earlier. In the second part we have a closer look at a prime case of
the latter where a best approximation of a point in a normed space is sought in a finite-
dimensional subspace. We conclude with a brief discussion of best approximations in
a convex subset to a point in a uniformly convex normed space.

2 Minima and best approximations

We first show how minima can be expressed as best approximations. Let X be a metric
space with metric d , let S be a located subset of X , and let x be a point of X . A best
approximation to x in S is a minimum point of the function f : S→ R defined by

f (s) = d(x, s).

Moreover, x has (uniformly) at most one best approximation in S if f has (uniformly)
at most one minimum in S . The following theorem shows conversely that minima
of a function on a metric space into R which is bounded below can be seen as best
approximations.

Theorem 1 Let f be a function from a metric space (X, d) into R which is bounded
below. By ∗ we denote a point that is not in X . There exists a metric ρ on X ∪ {∗}
such that

f (x) = ρ(∗, x)

for every x ∈ X ; in particular, the minima of f in X are exactly the best approximations
to ∗ in X . Moreover, inf f can be computed if and only if distρ(∗,X) can be computed,
in which case

inf f = distρ(∗,X) .

If, in addition, (X, d) is bounded, then f has (uniformly) at most one minimum in (X, d)
precisely when ∗ has (uniformly) at most one best approximation in (X, ρ). Finally, if
(X, d) is compact and f is uniformly continuous, then (X, ρ) is compact.

10See, for instance, [3, 4, 5, 6, 7, 8, 11, 12, 20, 25, 39, 40, 41, 54, 55]
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6 Matthew Hendtlass and Peter Schuster

Proof Let f be a function from (X, d) into R which is bounded below, let ∗ be some
point not in X , and let X′ = X ∪ {∗}. We first replace d by the metric d′ = d/(1 + d)
on X , with respect to which X is bounded with diameter no greater than 1, and define
g : X → R by

g(x) = f (x)− 1/2;

since f is bounded below, we may assume that g(x) > 0 for all x . We next extend d′ to
be a metric on X′ by setting d′(∗, x) = 1/2 for all x ∈ X ; the only nontrivial property
to verify is the following instance of the triangle inequality: for all x, y ∈ X we have

d′(x, y) 6 1 = d′(x, ∗) + d′(∗, y),

because the diameter of (X, d′) is bounded by 1. We finally extend g to X′ by setting
g(∗) = 0, and define ρ : X′ × X′ → R by

ρ(x, y) = d′(x, y) + |g(x)− g(y)| ,
for which clearly d′ 6 ρ. It is easy to see that (x, y) 7→ |g(x)−g(y)| is a pseudo-metric
on X′ ; whence (X′, ρ) is a metric space. Moreover,

ρ(∗, x) = d′(∗, x) + |g(x)− g(∗)|
= 1/2 + |g(x)|
= 1/2 + g(x)

= f (x)

for every x . In particular, each minimum of f corresponds to a best approximation to
∗ in the subset X of (X′, ρ), and distρ(∗,X) can be computed precisely when inf f can
be computed, in which case they are equal.

We now assume that (X, d) is bounded, and show that f has (uniformly) at most one
minimum in (X, d) if and only if ∗ has (uniformly) at most one best approximation in
(X, ρ). Since X is bounded, d and d′ are similar metrics (i.e. each of them is bounded
by the other up to a nonnegative multiplicative constant), from which—together with
d′ 6 ρ—the “if” part of the desired equivalence follows.

As for the “only if” part, since the non-uniform case is completely analogous, we may
focus on the uniform case. Let ε > 0 be given, and take δ > 0 as in “f has uniformly
at most one minimum in (X, d)” such that δ 6 ε/3. Now if x, y ∈ X are such that f (x)
and f (y) are both smaller than inf f + δ , then

ρ(x, y) = d′(x, y) + |g(x)− g(y)|
6 d(x, y) + |f (x)− f (y)|
< ε/3 + 2δ

6 ε.
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To conclude we show that

— if (X, d) is complete and bounded, and f is continuous, then (X, ρ) is complete;

— if (X, d) is totally bounded and f is uniformly continuous, then (X, ρ) is totally
bounded.

Suppose first that (X, d) is complete and bounded, and that f , and hence g, is con-
tinuous. Let (xn) be a Cauchy sequence in (X, ρ); it then also is a Cauchy sequence
in (X, d′), because d′ 6 ρ. But, since X is bounded, d and d′ are similar metrics as
above, so (X, d′) is complete; whence there exists x ∈ X such that xn → x in (X, d′)
as n→∞. Since g is continuous (with respect to d and thus also with respect to d′ ),
we have

ρ (x, xn) = d′(x, xn) + |g(x)− g(xn)| → 0

as n→∞. Thus xn → x in (X, ρ) as n→∞, so (X, ρ) is complete.

Suppose next that (X, d) is totally bounded and that f , and hence g, is uniformly
continuous. Again d and d′ are similar metrics, so (X, d′) is totally bounded. Fix
ε > 0 and let δ ∈ (0, ε/2) be such that for all x, y ∈ X , if ρ(x, y) < δ , then
|g(x)− g(y)| < ε/2. Let {x1, . . . , xn} be a δ -approximation to (X, d′). Let x ∈ X , and
pick 1 6 i 6 n such that d′(x, xi) < δ . Then

ρ(x, xi) = d′(x, xi) + |g(x)− g(xi)|
< ε/2 + ε/2

= ε.

Hence {x1, . . . , xn} is an ε-approximation to (X, ρ).

From what has been said before, it is immediate that if a subset S of a metric space X
is complete and has uniformly at most one best approximation to a point x in X , then
there is a (necessarily unique) best approximation to x in S .

We can now classify the counterpart of UAM for best approximations:

UAB If a compact subset S of a metric space X has at most one best
approximation to a point x of X , then S has uniformly at most one best
approximation to x.

Corollary 2 UAB is equivalent to FT.

Proof It is clear that UAM implies UAB, whereas the converse implication follows
from Theorem 1. Since UAM is equivalent to FT [49], so is UAB.
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8 Matthew Hendtlass and Peter Schuster

3 Finite-dimensional subspaces

We now turn our attention to a fundamental result in constructive approximation theory
[17]. Let X be a normed space, let x ∈ X , and let S be a located subset of X . It is
clear that S has uniformly at most one best approximation to x precisely when for each
ε > 0 there exists δ > 0 such that, for all y, y′ ∈ S , if

max
{
‖x− y‖, ‖x− y′‖

}
< dist(x, S) + δ,

then ‖y− y′‖ < ε, whereas S has at most one best approximation to x if and only if

max
{
‖x− y‖, ‖x− y′‖

}
> dist(x, S)

for all distinct y, y′ ∈ S . While the latter notion of (non-uniform) uniqueness was
coined in [17], a located subset S was called quasi-proximinal in [18] if every x ∈ X
with at most one best approximation in S has a, necessarily unique, best approximation
in S .

Finitely many vectors e1, . . . , en in X are linearly independent if λ1e1 + . . .+λnen 6= 0
whenever |λ1|+ . . .+ |λn| > 0. A subspace E of X is finite-dimensional [17] if there
exist linearly independent vectors e1, . . . , en ∈ E and bounded linear functionals
ui : E → R (1 6 i 6 n), the component functions, such that

x =

n∑
i=1

ui(x)ei

for all x in E ; in this case n is called the dimension of E , which of course is uniquely
determined by E . Any finite-dimensional subspace E of X is located [17, Proposition
2.1] and complete [14, p. 307]; in particular, E is a closed subset of X .11 We denote
by Re the one dimensional subspace spanned by a nonzero element e of X . A subset
S of X is said to be convex if ty + (1− t)y′ ∈ S whenever y, y′ ∈ S and t ∈ [0, 1].

Theorem 3 Each finite-dimensional subspace of a normed space is quasi-proximinal.

In the following we give a dissection of Bridges’ proof of Theorem 3 above; see
Theorem 2.2 of [17], the (only) Theorem of [18], and Chapter 7, Theorem 2.12 of [14].
We do this with three goals in mind:

— to recast the proof in terms of uniform uniqueness;

— to elucidate the structure of the proof, and hence the structure of the inherent
algorithm;

11In [14] locatedness and closedness are included into the definition of a subspace.
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— to further illustrate the relationship between minima and best approximations.

Let X be a normed space, let x ∈ X , let E be a finite-dimensional subspace of X , and
let S be a located convex subset of E . For δ > 0 we define

Sδ = {e ∈ S : ‖x− e‖ < dist(x, S) + δ} .

Then for each positive δ , Sδ is inhabited and—as the intersection of the convex set S
with an open ball—bounded and convex. If δ1 > δ2 > 0, then Sδ2 ⊂ Sδ1 . We can
rewrite the condition that S has uniformly at most one best approximation to x as

∀ε>0∃δ>0∀y,y′∈Sδ

(
‖y− y′‖ < ε

)
.

We begin with, a slight extension of, the 1-dimensional case of Theorem 3, where the
presence of a total ordering makes life much easier.

Lemma 4 Let X be a normed space, let x, e ∈ X with e 6= 0, and let S be a located
convex subset of Re. If x has at most one best approximation in S , then x has uniformly
at most one best approximation in S .

Proof Fix ε > 0, replace e by e/‖e‖, and let t1 < · · · < tn be real numbers such that
{t1e, . . . , tne} is an ε/5-approximation to S . If n ∈ {1, 2}, then, since ‖e‖ = 1, the
diameter of S1 is less than ε and we need only set δ = 1; therefore we may assume
that n > 2. Since x has at most one best approximation in S , there exists δ > 0 and
i0 ∈ {1, . . . , n} such that ‖x− tie‖ > δ for all i 6= i0 . Let t ∈ Sδ ; then t 6= ti for all
i 6= i0 . Given that Sδ is nonempty and convex, we must have that ‖te − t1e‖ < ε/5,
‖te − tne‖ < ε/5, or there exists j 6= i0 such that Sδ ⊂ (tj, tj+2)e. In the first case,
Sδ ⊂ (−∞, t3)e ∩ S which has diameter less than ε since ‖e‖ = 1 and by our choice
of t1, . . . , tn ; similarly, in the second case Sδ ⊂ (tn−2,∞)e∩ S , so diam(S) < ε. In the
final case diam(S) < 2ε/5. Hence in all cases, for all y, y′ ∈ Sδ , ‖y− y′‖ < ε.

Corollary 5 Let X be a normed space, let x, e ∈ X with e 6= 0, and let S be a closed
located convex subset of Re. If x has at most one best approximation in Re, then x
has a best approximation in S .

Extending this to encompass Bridges’ main lemma [18] seems to require countable
choice, at least in the weak form given in [23] that is classically valid without any
choice.

Lemma 6 Let X be a normed space, let x, e ∈ X with e 6= 0, let S be a closed located
convex subset of Re, and let d ∈ R be such that

max
{
‖x− s‖ ,

∥∥x− s′
∥∥} > d

Journal of Logic & Analysis 3:5 (2011)



10 Matthew Hendtlass and Peter Schuster

for all distinct s, s′ ∈ S . Then there exists τ ∈ R such that τe ∈ S and if ‖x− τe‖ > d ,
then dist(x, S) > d .

Proof We first note that d 6 dist(x, S). Let (λn) be an increasing binary sequence
such that

λn = 0 ⇒ dist(x, S)− d < 1/n,

λn = 1 ⇒ dist(x, S)− d > 1/(n + 1),

and, using Lemma 4, construct a sequence (δn) of positive real numbers such that
diam(Sδn) < 1/(n + 1) for each n. We construct a Cauchy sequence (tn) in R as
follows. If λn = 0, pick t ∈ Sδn and set tn = t ; if λn = 1 set tn = tn−1 . Let τ be the
limit of (tn) in R. Since S is closed, we have τe ∈ S . Suppose that ‖x− τe‖ > d and
let N > 0 be such that

‖x− τe‖ > d + 2/N.

If λN = 0, then ‖x− τe‖ < dist(x, S) + 1/N and dist(x, S)− d < 1/N , so

‖x− τe‖ < dist(x, S) + 1/N < d + 2/N.

This contradiction ensures that λN = 1; whence dist(x, S) > d .

The particular case d = dist(x,Re) of Lemma 6 says that if S has at most one best
approximation to x , then it does have a—necessarily unique—best approximation.

In [17], Bridges proceeds to prove Theorem 3 by an induction on the dimension
of the finite-dimensional subspace. The next proposition isolates this induction. (The
previous extension to closed located convex subsets of the finite-dimensional subspaces
breaks down here; a counterexample can be constructed by extending that, in [17], of a
linear subspace without a best approximation.) We need a few more definitions, and a
lemma from [24]. Let E be a closed located subspace of a normed space X . We define
a semi-norm ‖ · ‖X/E on X by

‖x‖X/E = ρ(x,E).

With the inequality given by

x 6= y⇔ ‖x− y‖X/E 6= 0

(X, ‖ · ‖X/E) becomes a normed space called the quotient space of X by E , written
X/E ; we read X/E as X modulo E . The following is Lemma 4.2.2 of [24]:

Journal of Logic & Analysis 3:5 (2011)
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Lemma 7 Let {e1, . . . , en} be a basis for an n-dimensional subspace V of a normed
space X , let 1 6 m < n, and let W be the subspace of X with basis {e1, . . . , em}.
Then the span of {em+1, . . . , en} is an (n − m)-dimensional subspace of the quotient
space X/W .

Proposition 8 Let X be a normed space, let E be a finite-dimensional subspace of X ,
and let x ∈ X be such that x has at most one best approximation in E . Then for each
finite-dimensional subspace E′ of E , x has at most one best approximation in E/E′

(viewed as a subspace of X/E′ ).

Proof We proceed by induction on the dimension of E . If E = Re, then the result
is trivial. Now suppose that we have proved the result for subspaces with dimension
n − 1, let {e1, . . . , en} be a basis for E , and let E′ be a finite-dimensional linear
subspace of E . Without loss of generality e1 ∈ E′ .

Let v1, v2 ∈ E be such that ‖v1 − v2‖X/Re1 > 0. If t, t′ ∈ R with t 6= t′ , then for
i = 1, 2

‖(vi − te1)− (vi − t′e1)‖ = |t − t′|‖e1‖ 6= 0,

so
max{‖x− (vi − te1)‖, ‖x− (vi − t′e1)‖} > dist(x,E).

Applying Lemma 6 with x = x− vi, e = e1 , and d = dist(x,E) produces τi such that
if ‖x− (vi − τie1)‖ > dist(x,E), then dist(x− vi,Re1) > dist(x,E).

Since x has at most one best approximation in E , either

‖x− v1 − τ1e1‖ > dist(x,E) or ‖x− v2 − τ2e1‖ > dist(x,E).

Hence
max{dist(x− v1,Re1), dist(x− v2,Re1)} > dist(x,E),

so x has at most one best approximation in E modulo Re1 . Since, by Lemma 7,
E/Re1 is an (n − 1)-dimensional subspace of X/Re1 , it follows from our induction
hypothesis that x has at most one best approximation in E modulo Re1 modulo E′ .
Since X/E′ = (X/Re1)/E′ , this completes the induction.

We can now give the uniform uniqueness version of Theorem 3, from which that
theorem follows.

Theorem 9 Let X be a normed space, let E be a finite-dimensional subspace of X ,
and let x ∈ X be such that x has at most one best approximation in E . Then x has
uniformly at most one best approximation in E .

Journal of Logic & Analysis 3:5 (2011)



12 Matthew Hendtlass and Peter Schuster

Proof Let ε > 0 and let e1, . . . , en be a basis for E with component functions
u1, . . . , un . Since all norms on a finite-dimensional subspace are equivalent (Corollary
4.1.9 of [24]), it suffices to show that there exists δ > 0 such that

|ui(y)− ui(y′)| < ε

for all y, y′ ∈ Sδ and each i ∈ {1, . . . , n}.

For each i ∈ {1, . . . , n} let

Ei = span{ej : 1 6 j 6 n, j 6= i}.

By Proposition 8, x has at most one best approximation in E modulo Ei for each i.
Using Lemma 4, construct δ1, . . . , δn such that if

‖x− tei‖X/Ei
< distX/Ei(x,Rei) + δi,

then |t − t′| < ε. It remains to set δ = min{δi : 1 6 i 6 n}.

4 Convex subsets

We finally review the case of best approximations to a convex set in a uniformly convex
normed space. In all the sources referred to in this section the following definition, a
uniform-quantitative variant of the one of a strictly convex normed space, has been put
in one way or the other: a normed space X is uniformly convex if for all ε > 0 there
exists δ > 0 such that

‖(x + y)/2‖ > 1− δ ⇒ ‖x− y‖ < ε

for all x, y ∈ X with ‖x‖ = ‖y‖ = 1. (In [36] the dependence of δ on ε is expressed
as a modulus of uniform convexity.)

With Chapter 9, Exercise 5 of [13] and again with Chapter 7, Exercise 11 of [14], which
in this section will be referred to as Bishop’s exercise, it is claimed that the following
statement has a constructive proof: if S is a closed located convex subset of a uniformly
convex Banach space X , then each point in X has a unique best approximation in S .
(Proposition 17.5 of [36] says the same, with a modulus of uniform convexity for X .)
Note that there is no need to suppose that the uniformly convex normed space X be
complete: it suffices to assume that the convex located subset S is complete.

Since finite-dimensional (linear) subspaces are complete located convex subsets (see
above), Theorem 3.1 of [17] is a special case of Bishop’s exercise. This Theorem 3.1
says that if E is a finite-dimensional subspace of a uniformly convex Banach space X ,
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then each point in X has a, necessarily unique, best approximation in E . It was proved
by what then was a new technique involving uniqueness; more precisely Theorem
3.1 was reduced to Theorem 2.2 of [17], a forerunner of the quasi-proximinality of
finite-dimensional subspaces of arbitrary normed spaces (see Theorem 3 above). An
inspection of the very proof of this Theorem 3.1 reveals that each point in a uniformly
convex normed space X has indeed uniformly at most one best approximation in any
given finite-dimensional subspace E of X .

The content of Theorem 6 of [22] is that if E is a complete located subspace of a uni-
formly convex normed space X , then each point of X has a unique best approximation
in E . Inasmuch as E need not be finite-dimensional, this clearly generalises Theorem
3.1 of [17].

When going through the proof of Theorem 6 of [22] one will notice that E may even
be a convex subset rather than a (linear) subspace; whence one might think that this
theorem is nothing but a remake of Bishop’s exercise. The point of Theorem 6 of [22]
is, however, that its proof is done without countable choice, again with a concept of a
completion that is free of sequences; on the other hand it is clear that in the intended
proof of Bishop’s exercise a sequence would have to be chosen to approximate the best
approximation.

Last but not least, by looking at the proof of Theorem 6 of [22] together with its Lemma
5 we can exhibit the essence of Bishop’s exercise: if S is a convex located subset of a
uniformly convex normed space X , then each point in X has uniformly at most one best
approximation in S . (This is Proposition 17.4 of [36], again with moduli of uniform
convexity and uniqueness.)
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